PENGANTAR

Puji syukur kehadirat Allah SWT atas karunia-Nya sehingga penulisan bahan ajar Ortodonsia I ini dapat selesai.

Terdorong pada keinginan penulis untuk memberikan panduan terhadap mahasiswa Kedokteran Gigi yang mempunyai perhatian pada Ortodonsia, maka penulis menyempatkan diri untuk menulis bahan ajar Ortodonsia I. Ortodonsia I itu sendiri adalah cabang dari ilmu Kedokteran Gigi yang mempelajari tentang falsafah ilmu, pengertian dan definisi ortodonsia, tujuan dan bermacam-macam perawatan ortodontik, istilah-istilah yang digunakan dalam ortodonsia, pertumbuhan dan kelainan dentofasial, kelainan-kelainan dentofasial beserta klasifikasinya, serta beberapa macam alat ortodontik lepasan yang digunakan dalam perawatan, prosedur pemeriksaan, penentuan diagnosis serta perencanaan perawatan ortodontik.

Pada kesempatan ini kami ingin mengucapkan terima kasih yang tak terhingga atas terselesaikannya penulisan buku ajar ini kepada:

1. Rektor dan Wakil Rektor I Universitas Gadjah Mada
2. Dekan Fakultas Kedokteran Gigi Universitas Gadjah Mada
3. Kepala Bagian Ortodonsia Fakultas Kedokteran Gigi Universitas Gadjah Mada
4. Dosen pengampu mata kuliah Ortodonsia I

Penulis menyadari buku ajar ini belum sempurna maka diperlukan kritik dan saran guna penyempurnaan buku ajar ini.

Yogyakarta, 10 Januari 2008
Penanggungjawab Mata Kuliah

drg. JCP. Heryumani Sulandjari, MS., Sp.Ort
TINJAUAN MATA KULIAH

1. Deskripsi singkat mata kuliah Ortodonsia I
Mata kuliah Ortodonsia I diselenggarakan dengan tatap muka satu jam perminggu selama satu semester, di dalam tatap muka mahasiswa diberikan materi dasar Ortodonsia. Prasarat mengikuti mata kuliah ini mahasiswa harus telah mengikuti mata kuliah anatomi.

2. Kegunaan mata kuliah Ortodonsia I
Mahasiswa dapat mengerti dasar-dasar Ortodonsia yang berguna untuk mata kuliah Ortodonsia II, III dan IV.

3. Tujuan Intruksional umum
Setelah mengikuti mata kuliah mahasiswa diharapkan dapat memahami dan menjelaskan fungsi dan mekanisme kerja alat tersebut untuk perawatan berbagai macam kelainan dentofasial berdasarkan falsafah ilmu, pertumbuhan dan perkembangan dentofasial, serta beberapa macam alat ortodontik lepasan yang digunakan dalam perawatan, prosedur pemeriksaan, penentuan diagnosis, sesuai dengan maksud dan tujuan perawatan yang diharapkan.

4. Susunan atau urutan bahan ajar :
 a. Falsafah Ortodonsia
 b. Kelainan pertumbuhan dan perkembangan
 c. Kelainan dentofasial
 d. Alat Ortodontik lepasan
 e. Ekspansi
 f. Aktivator
 g. Prosedur pemeriksaan
 h. Perhitungan dan determinasi lengkung
 i. Sefalometri

5. Petunjuk bagi mahasiswa untuk mempelajari bahan ajar :
 a. Membaca bahan ajar dengan seksama
 b. Membuat skema hubungan pada masing-masing pokok bahasan
 c. Menjawab latihan-latihan yang diberikan
DAFTAR ISI

Halaman

<table>
<thead>
<tr>
<th>Bab</th>
<th>Judul</th>
<th>Halaman</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pengantar</td>
<td></td>
<td>1</td>
</tr>
<tr>
<td>Tinjauan Mata Kuliah</td>
<td></td>
<td>2</td>
</tr>
<tr>
<td>Daftar Isi</td>
<td></td>
<td>3</td>
</tr>
<tr>
<td>I.</td>
<td>Falsafah Ortodonsia</td>
<td>6</td>
</tr>
<tr>
<td>a.</td>
<td>Pendahuluan</td>
<td>6</td>
</tr>
<tr>
<td>b.</td>
<td>Pengertian Ortodonsia</td>
<td>6</td>
</tr>
<tr>
<td>c.</td>
<td>Definisi Ortodonsia</td>
<td>6</td>
</tr>
<tr>
<td>d.</td>
<td>Tujuan utama Ortodonsia</td>
<td>7</td>
</tr>
<tr>
<td>e.</td>
<td>Sejarah perkembangan Ortodonsia</td>
<td>9</td>
</tr>
<tr>
<td>f.</td>
<td>Perawatan Ortodontik</td>
<td>11</td>
</tr>
<tr>
<td>g.</td>
<td>Beberapa istilah dalam Ortodonsia</td>
<td>14</td>
</tr>
<tr>
<td>II.</td>
<td>Pertumbuhan dan perkembangan dentofasial</td>
<td>21</td>
</tr>
<tr>
<td>a.</td>
<td>Pendahuluan</td>
<td>21</td>
</tr>
<tr>
<td>b.</td>
<td>Pola arah pertumbuhan muka dan kepala</td>
<td>22</td>
</tr>
<tr>
<td>c.</td>
<td>Faktor yang mempengaruhi pertumbuhan dan perkembangan</td>
<td>26</td>
</tr>
<tr>
<td>III.</td>
<td>Kelainan Dentofasial</td>
<td>34</td>
</tr>
<tr>
<td>a.</td>
<td>Pendahuluan</td>
<td>34</td>
</tr>
<tr>
<td>b.</td>
<td>Kelainan dentofasial (Dentofacial anomali)</td>
<td>36</td>
</tr>
<tr>
<td>c.</td>
<td>Golongan maloklusi</td>
<td>36</td>
</tr>
<tr>
<td>d.</td>
<td>Klasifikasi maloklusi</td>
<td>37</td>
</tr>
<tr>
<td>e.</td>
<td>Klasifikasi Angle</td>
<td>37</td>
</tr>
<tr>
<td>IV.</td>
<td>Ekspansi</td>
<td>40</td>
</tr>
<tr>
<td>a.</td>
<td>Pendahuluan</td>
<td>40</td>
</tr>
<tr>
<td>b.</td>
<td>Rapid maxillary expansion</td>
<td>40</td>
</tr>
<tr>
<td>c.</td>
<td>Quad Helix</td>
<td>41</td>
</tr>
<tr>
<td>d.</td>
<td>Plat Ekspansi</td>
<td>41</td>
</tr>
<tr>
<td>V.</td>
<td>Aktivator</td>
<td>52</td>
</tr>
</tbody>
</table>
a. Pendahuluan ... 52
b. Perubahan-perubahan yang terjadi pada pemakaian aktivator 53
c. Indikasi .. 53
d. Kontra indikasi ... 55
e. Keuntungan-keuntungan pemakaian aktivator .. 56
f. Kerugian-kerugian pemakaian aktivator .. 56
g. Bagian-bagian aktivator ... 59
h. Lama pemakaian aktivator .. 60
i. Jarak waktu pengontrolan ... 60
j. Penyesuaian atau pengurangan pelat akrilik aktivator pada waktu kontrol........... 60
k. Pengurangan untuk maloklusi Angle klas II devisi 1 .. 61
l. Pengurangan pada maloklusi Angle Klas III .. 64
m. Prosedur pembuatan aktivator .. 64
n. Pembuatan working bite .. 65
o. Penanaman model kerja pada okludator .. 65
p. Pembuatan kawat ... 66
q. Pembuatan model malam ... 68
r. Tray-in ... 68
s. Inbed dalam Cuvet .. 68
VI. Pemeriksaan Ortodonsi .. 70
 a. Pendahuluan .. 70
 b. Extra Oral ... 73
c. Intra Oral .. 77
VII. Perhitungan dan Determinasi lengkung ... 86
 a. Pendahuluan .. 86
 b. Perhitungan-perhitungan dalam perawatan Ortodontik 86
 • Metode Nance .. 86
 • Metode Moyers ... 89
 • Metode Pont .. 91
 • Metode Korkhaus ... 94
 • Metode Howes .. 94
<table>
<thead>
<tr>
<th>Topic</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Metode Thompson & Brodie</td>
<td>96</td>
</tr>
<tr>
<td>Metode Kesling</td>
<td>99</td>
</tr>
<tr>
<td>Analisis Ruang (Crowding)</td>
<td>104</td>
</tr>
<tr>
<td>Determinasi lengkung gigi</td>
<td>107</td>
</tr>
<tr>
<td>VIII. Sefalometri</td>
<td>114</td>
</tr>
<tr>
<td>Pendahuluan</td>
<td>114</td>
</tr>
<tr>
<td>Pengenalan Sefalometri Radiografik</td>
<td>114</td>
</tr>
<tr>
<td>Teknik Sefalometri Radiografik</td>
<td>116</td>
</tr>
<tr>
<td>Referensi Sefalometri Radiografik</td>
<td>119</td>
</tr>
<tr>
<td>Analisis Sefalometri Radiografik</td>
<td>122</td>
</tr>
<tr>
<td>Kelemahan Sefalometrik</td>
<td>123</td>
</tr>
<tr>
<td>Daftar Pustaka</td>
<td>124</td>
</tr>
</tbody>
</table>
I. FALSAFAH ORTODONSIA

❖ PENDAHULUAN

Pada era modern seperti saat ini, kebutuhan dan tuntutan akan perawatan ortodontik semakin banyak. Masyarakat semakin menyadari bahwa gigi yang tidak teratur terlebih lagi jika disertai adanya kelainan bentuk muka yang disebabkan oleh adanya hubungan rahang yang tidak harmonis akan sangat mempengaruhi penampilan. Disamping itu keadaan gigi yang tidak teratur dan hubungan rahang yang tidak harmonis sangat mempengaruhi sistem pengunyahan, pencernaan serta sistem artikulasi atau pembentukan suara.

Untuk dapat melakukan perawatan ortodontik, mahasiswa kedokteran gigi dituntut untuk menguasai pengetahuan yang melandasi tindakan perawatan yang akan dilakukan. Selain itu juga dituntut untuk menguasai ilmu-ilmu pengetahuan lain yang mendukung serta diperlukan ketrampilan dalam membuat alat ortodontik, mampu memahami mekanisme kerja alat ortodontik, mampu melakukan perawatan serta mengevaluasi hasil perawatan yang dilakukan.

❖ PENGERTIAN ORTODONSIA

Ortodonsia (Orthodontia, Bld., Orthodontic, Ingg.) berasal dari bahasa Yunani (Greek) yaitu orthos dan dons yang berarti orthos (baik, betul) dan dons (gigi). Jadi ortodonsia dapat diterjemahkan sebagai ilmu pengetahuan yang bertujuan memperbaiki atau membetulkan letak gigi yang tidak teratur atau tidak rata.

Keadaan gigi yang tidak teratur disebabkan oleh malposisi gigi, yaitu kesalahan posisi gigi pada masing-masing rahang. Malposisi gigi akan menyebabkan malrelasi, yaitu kesalahan hubungan antara gigi-gigi pada rahang yang berbeda. Lebih lanjut lagi, keadaan demikian menimbulkan maloklusi, yaitu penyimpangan terhadap oklusi normal. Maloklusi dapat terjadi karena adanya kelainan gigi (dental), tulang rahang (skeletal), kombinasi gigi dan rahang (dentsoskeletal) maupun karena kelainan otot-otot pengunyahan (muskuler).
DEFINISI ORTODONSI

1. Menurut Dr. E.H. Angle (1900)
 Ortodonsia adalah ilmu pengetahuan yang bertujuan meratakan atau membetulkan kedudukan gigi-gigi.

2. Menurut Noyes (1911)
 Ortodonsia adalah ilmu yang mempelajari hubungan gigi-gigi terhadap perkembangan muka dan memperbaiki akibat pertumbuhan yang tidak normal.
 Disini telah menyangkut ilmu anatomi dan biologi.

3. Menurut The British Society of Orthodontics (1922)
 Ortodonsia adalah ilmu yang mempelajari pertumbuhan dan perkembangan rahang, muka dan tubuh pada umumnya yang dapat mempengaruhi kedudukan gigi. Juga mempelajari adanya aksi dan reaksi dari pengaruh luar maupun pengaruh dalam terhadap perkembangan, serta pencegahan dan perawatan terhadap perkembangan yang mengalami gangguan atau hambatan dan pengaruh jelek.

4. Menurut American Association of Orthodontist
 Ortodonsia adalah ilmu yang mempelajari pertumbuhan dan perkembangan gigi dan jaringan sekitarnya dari janin sampai dewasa dengan tujuan mencegah dan memper-baiki keadaan gigi yang letaknya tidak baik untuk mencapai hubungan fungsional serta anatomis yang normal.

 Dengan memperhatikan definisi-definisi di atas, Dr. Angle dan Noyes memandang tindakan kuratif lebih dipentingkan, sedangkan mulai tahun 1922 sampai sekarang lebih mengutamakan tidakan preventifnya, disamping tetap menjalankan tindakan kuratif.
TUJUAN UTAMA ORTODONSIAS

1. Mencegah terjadinya keadaan abnormal dari bentuk muka yang disebabkan oleh kelainan rahang dan gigi.

Adanya cacat muka yang disebabkan oleh kelainan rahang dan susunan gigi yang tidak teratur dapat menyebabkan bentuk muka yang kurang harmonis dan faktor estetis kurang. Dengan demikian dapat mengakibatkan pertumbuhan mental kurang sehat, seperti rasa rendah diri, rasa malu dan tidak bebas mengemukakan pendapat.

2. Mempertinggi fungsi pengunyahan yang betul.

Pengunyahan yang betul dan efisien dapat dicapai setinggi mungkin jika susunan gigi-gigi itu baik, stabil dan seimbang, begitu juga hubungan rahangnya. Pada gigi-gigi yang tidak teratur atau pada lengkung gigi yang sempit dapat mengakibatkan gerakan lidah tidak bebas sehingga terjadi penelanan yang salah, dan keadaan ini dapat menimbulkan kelainan yang lebih lanjut.

3. Mempertinggi daya tahan gigi terhadap terjadinya karies.

Gigi-gigi yang tidak teratur akan menyebabkan sisa-sisa makanan mudah melekat pada permukaan gigi dan self cleansing dari giginya menjadi tidak ada. Karena pengaruh Lactobacillus, karbohidrat dalam sisa makanan akan diubah menjadi asam laktat yang dapat melarutkan kalsium dari enamel dan dentin dan terjadilah karies gigi. Dengan membetulkan letak gigi menjadi teratur berarti akan mempertinggi daya tahan gigi terhadap karies.

Gigi yang posisinya tidak baik dan tidak teratur akan menyulitkan dalam menjaga kebersihannya. Dengan demikian selain dapat terjadi karies pada gigi-giginya, keadaan demikian juga dapat menimbulkan penyakit periodontal. Gigi yang tidak teratur juga dapat menyebabkan terjadinya oklusi traumatik, sehingga dapat memperparah penyakit periodontal yang terjadi.
5. Mencegah perawatan ortodontik yang berat pada usia lebih lanjut.
 Pencegahan terhadap timbulnya maloklusi akan lebih efektif dan bermanfaat dari pada perawatan terhadap maloklusi yang sudah terjadi.

6. Mencegah dan menghilangkan cara pernafasan yang abnormal dari segi perkembangan gigi.
 Jika terdapat polip di dalam hidung atau adanya tonsil yang membesar maka orang akan bernafas lewat mulutnya, sehingga mulut selalu dalam keadaan terbuka. Dengan demikian otot-otot disekitar pipi (m. masseter, m. buccinator) menjadi hipertonus. Keadaan ini akan menyebabkan hambatan pertumbuhan rahang ke arah lateral, sehingga menyebabkan rahang atas menjadi sempit dan diikuti gigi-gigi depan protrusif atau merongos. Perawatan ortodontik pada gigi-gigi yang protrusif tadi harus disertai oleh pengambilan polip atau tonsil yang membesar tadi. Dengan demikian perawatan yang dilakukan akan memperbaiki pernafasan yang abnormal.

7. Memperbaiki cara bicara yang salah.
 Orang yang mempunyai kebiasaan meletakkan lidah di antara kedua lengkung giginya akan menimbulkan gigitan terbuka. Keadaan ini akan menyebabkan gangguan dalam proses artikulasinya (proses pembentukan suara), sehingga akan mengakibatkan pengucapan kata atau cara bicara yang salah. Dengan merawat maloklusinya, maka akan memperbaiki cara bicaranya.

8. Menghilangkan kebiasaan buruk yang dapat menimbulkan kelainan yang lebih berat.
 Kebiasaan buruk seperti menggigit kuku, ibu jari, pensil atau lainnya, menghisap bibir, mendorong lidah pada gigi-gigi depannya, menekan dagu dan sebagainya dapat menimbulkan kelainan baru atau memperberat kelainan yang sudah ada. Dengan melakukan perawatan ortodontik, maka kebiasaan buruk dapat dihambat dan dihilangkan.

Adanya infeksi pada persendian temporomandibuler sering mengakibatkan deviasi atau penyimpangan mandibula. Demikian pula kebiasaan mengunyah satu sisi dapat menimbulkan kelainan tersebut. Perawatan ortodontik yang tepat dapat memperbaiki kelainan persendian tadi.

10. Menimbulkan rasa percaya diri yang besar.

Dengan meningkatkan penampilan akibat perawatan ortodontik, seorang akan memiliki rasa percaya diri yang besar.

❖ SEJARAH PERKEMBANGAN ORTODONSI.

Sampai abad pertengahan, perkembangan ilmu kedokteran gigi ini berjalan sangat lambat. Mencetak gigi dalam kedokteran gigi pertama kali dikerjakan oleh Mathais Gottfried Purman pada tahun 1692 dengan menggunakan lilin, sedangkan penggunaan Plaster of Paris oleh Philip Pfaff baru dikerjakan satu abad kemudian, yaitu tahun 1756. Beberapa tahun kemudian terbit buku mengenai maloklusi yang
dikarang oleh Kneisel dari Jerman dengan judul Der Stiefstand der Zahne. Kneisel menganjurkan removable appliance (alat lepasan) dan sendok cetak yang modern.

Di Amerika Serikat, Dr. Weinberger membagi sejarah ortodonsia dalam 3 periode:

1. Periode awal (antara tahun 1839 – 1880), disebut periode Harris sampai dengan Kingsley.
 Pada periode ini perawatan maloklusi dilakukan secara coba-coba dan didasarkan pada pengalaman saja, dan tidak dilakukan menurut suatu sistem tertentu yang didasarkan pada ilmu pengetahuan.

2. Periode kedua (antara tahun 1880 – 1900), disebut periode Kingsley sampai dengan Angle.
 Periode ini merupakan periode perkembangan ilmu ortodonsia sebagai suatu pengetahuan. Norman William Kingsley merawat penderita palatoschisis sampai mereka dapat berbicara dengan baik dan memperbaiki kecacatannya dengan protesa, memperkenalkan pemakaian biteplane (peninggi gigitan) dan occipital anchorage (penjangkaran oksipital). Pada waktu itu ortodonsia merupakan bagian dari protetik (prostodonsia).

3. Periode akhir (antara tahun 1900 – sekarang), disebut periode Ortodonsia modern.
 Dr. Edward H. Angle (1855 – 1930) pada tahun 1900 mendirikan sekolah Post Graduate of Orthodontic yang pertama. Dengan adanya sekolah ini ilmu ortodonsia berkembang dengan pesat. Angle menggolong-golongkan maloklusi menjadi klas-klas yang sampai sekarang disebut sebagai Klasifikasi
Angle, yang terdiri dari Klas I (Neteroklusi), Klas II (Distoklusi) dan Klas III (Mesioklusi). Tahun 1907 Dr. EH Angle menulis buku *Malocclusion of The Teeth*. Angle juga memperkenalkan alat Edgewise (*Edgewise Appliance*). Pada periode ini dipentingkan tindakan pencegahan (*Preventive Orthodontics*). Pengetahuan tentang pertumbuhan dan perkembangan sudah menjadi dasar yang kuat dari ortodonsia.

PERAWATAN ORTODONTIK.

- Menurut waktu dan tingkatan maloklusi, perawatan ortodontik dibagi menjadi:

 1. Orthodontik pencegahan (*Preventive Orthodontics*), yaitu segala tindakan yang menghindarkan segala pengaruh yang dapat merubah jalannya perkembangan yang normal agar tidak terjadi malposisi gigi dan hubungan rahang yang abnormal. Tindakan-tindakan yang diperlukan misalnya:

 a. Pada waktu anak masih dalam kandungan, ibu harus mendapatkan makanan yang cukup nilai gizinya untuk kepentingan pertumbuhan janin. Ibu harus cukup mendapat kalsium, fosfor, fluor dan vitamin-vitamin A, C dan D untuk mencukupi kebutuhan janin akan zat-zat tersebut.

Pada masa pergantian gigi harus dijaga agar gigi desidui tidak dicabut atau hilang terlalu awal (premature axtraction atau premature loss), ataupun terlambat dicabut sehingga gigi permanen penggantinya telah tumbuh (terjadi persistensi atau prolong retention gigi desidui). Jika gigi desidui harus dicabut jauh sebelum waktu tanggalnya, harus dibuatkan space maintainer untuk menjaga agar ruangan bekas gigi desidui tadi tidak menutup. Kebiasaan menghisap ibu jari (thumb sucking), menggigit bibir (lips biting), meletakkan lidah diantara gigi-giginya (tongue biting), mendorong lidah pada gigi-gigi depannya (tongue thrusting), cara berbicara yang salah, cara penelanan yang salah, adalah merupakan kebiasaan jelek yang apabila dilakukan dalam waktu yang cukup lama dan dilakukan pada masa pertumbuhan aktif, akan mengakibatkan timbulnya anomali pada gigi-giginya. Oleh karena itu tindakan menghilangkan kebiasaan jelek sedini mungkin merupakan suatu tindakan preventif terhadap timbulnya anomali.

Anak yang mempunyai tonsil yang membesar akan mengalami gangguan dalam pernafasannya sehingga anak tersebut akan bernafas melalui mulutnya. Kebiasaan ini juga akan menimbulkan kelainan pada lengkung rahang dan giginya. Sikap tubuh yang salah, misalnya selalu membungkuk, miring kanan atau kiri, juga merupakan kebiasaan jelek yang dapat menimbulkan kelainan. Seorang dokter gigi harus mengetahui seawal mungkin adanya penyimpangan dan
faktor predisposisi suatu kelainan. Kalau perlu dokter gigi segera mengirimkan pasien ke ahli ortodonsi atau ahli lainnya untuk perawatan penyakit sistemik dengan kelainan dentofasial atau adanya celah pada rahang atau bibirnya yang membutuhkan perawatan lebih kompleks.

2. Ortodontik interseptif (Interceptive orthodontics).
Ortodontik interseptif merupakan tindakan atau perawatan ortodontik pada maloklusi yang mulai tampak dan sedang berkembang. Disini maloklusi sudah terjadi sehingga perlu diambil tindakan perawatan guna mencegah maloklusi yang ada tidak berkembang menjadi lebih parah. Tindakan yang termasuk disini antara lain dengan menghilangkan penyebab maloklusi yang terjadi agar tidak berkembang dan dapat diarahkan agar menjadi normal. Contoh yang paling baik dari ortodontik interseptif ini adalah program terencana dari pencabutan beranting (serial extraction), yaitu pencabutan gigi kaninus desidui dan premolar yang dilakukan pada keadaan dimana gigi depan permanen tampak sedikit berjejali, sehingga dengan pencabutan pada waktu yang tepat dan terencana maka dapat memperbaiki gigi yang berjejali tadi. Tindakan interseptif lainnya misalnya dengan memberikan space regainer untuk mendapatkan kembali ruang yang menyempit akibat pencabutan atau hilangnya gigi desidui yang terlalu awal. Juga tindakan pelebaran rahang atas secara cepat (RME = Rapid Maxillary Expansion) pada rahang atas yang sangat sempit dimana sutura palatina masih renggang (belum terjadi interdigitasi sutura). Perawatan pada otot (myotheraphy) misalnya pada musculus orbicularis oris yang hipotonus juga termasuk tindakan interseptif. Demikian juga pergeseran ke distal molar satu permanen baik atas maupun bawah untuk mengatasi panjang lengkung yang kurang.

Tindakan perawatan interseptif ini dilakukan pada periode gigi bercampur (mixed dentition).
3. Ortodontik korektif atau kuratif (*Corrective* atau *curative orthodontics*).

Ortodontik korektif merupakan tindakan perawatan pada maloklusi yang sudah nyata terjadi. Gigi-gigi yang malposisi digeser ke posisi normal, dengan kekuatan mekanis yang dihasilkan oleh alat ortodontik. Gigi dapat bergeser karena sifat *adaptive response* jaringan periodontal.

Ortodontik kuratif atau korektif ini dilakukan pada periode gigi permanen.

- Menurut periode perawatan ortodontik dibagi dalam 2 periode:
 1. Periode aktif, merupakan periode di mana dengan menggunakan tekanan mekanis suatu alat ortodontik dilakukan pengaturan gigi-gigi yang malposisi, atau dengan memanfaatkan tekanan fungsional otot-otot sekitar mulut dilakukan perawatan untuk mengoreksi hubungan rahang bawah terhadap rahang atas.
 Contoh: Alat aktif : plat aktif, plat ekspansi
 Alat pasif : aktivator (suatu alat *myofungsional*).
 2. Periode pasif, yaitu periode perawatan setelah periode aktif selesai, dengan tujuan untuk mempertahankan kedudukan gigi-gigi yang telah dikoreksi agar tidak *relaps* (kembali seperti kedudukan semula), dengan menggunakan *Hawley retainer*.

- Menurut cara pemakaian alat, perawatan ortodontik dibagi menjadi:
2. Perawatan dengan alat cekat (*fixed appliances*), yaitu alat yang hanya
dapat dipasang dan dilepas oleh dokter yang merawat saja. Alat cekat ini
mempunyai kemampuan perawatan yang lebih kompleks.
Contoh : Teknik Begg, Edgewise, Twin Wire Arch, Straightwire dsb.

BEBERAPA ISTILAH DALAM ORTODONSIA.

- Istilah untuk menyatakan hubungan antara gigi-gigi rahang atas dan rahang
 bawah :
 1. Oklusi, yaitu hubungan antara gigi-gigi rahang atas dan rahang bawah di
 mana terdapat kontak sebesar-besarnya antara gigi-gigi tersebut.
 Oklusi normal ialah hubungan yang harmonis antara gigi-gigi di rahang
 yang sama dan gigi-gigi di rahang yang berlainan di mana gigi-gigi
dalam kontak yang sebesar-besarnya dan kondilus mandibularis terdapat
dalam fossa glenoidea.
 Oklusi normal merupakan hasil pertumbuhan dan perkembangan yang
 baik dari alat pengunyah dan meliputi hal yang kompleks, antara lain :
 a. Kedudukan gigi rahang atas dan rahang bawah dalam posisi normal.
 b. Fungsi yang normal dari jaringan dan otot-otot pengunyah.
 c. Hubungan persendian yang normal.
 2. Maloklusi, yaitu suatu penyimpangan gigi-gigi dari oklusi normal
 (Strang).
 yaitu penyimpangan dari oklusi normal yang mengganggu fungsi
 yang sempurna dari gigi-gigi (Dewey).
 Dr. EH Angle membagi hubungan antara gigi-gigi rahang atas dan rahang
 bawah menjadi 3 kelompok, yaitu : Klas I ,Klas II, dan Klas III. Lisher
 juga membagi menjadi 3 kelompok, yaitu : Netroklusi (= klas I Angle),
 Distoklusi (= klas II Angle), dan Mesioklusi (= klas III Angle).
a. Netroklusi (Klas I Angle), yaitu hubungan antara gigi-gigi rahang bawah terhadap gigi-gigi rahang atas di mana tonjol mesiobukal (mesiobuccal cusp) molar satu permanen atas berkontak dengan lekuk mesiobukal (mesiobuccal groove) molar satu permanen bawah.

![Gambar 1: Netroklusi](image1)

b. Distoklusi (Klas II Angle) = *post normal*, yaitu hubungan antara gigi-gigi rahang bawah terhadap gigi-gigi rahang atas di mana lekuk mesiobukal molar satu permanen bawah berada lebih ke distal dari tonjol mesiobukal molar satu permanen atas.

![Gambar 2: Distoklusi](image2)

c. Mesioklusi Klas III Angle) = *pre normal*, yaitu hubungan antara gigi-gigi rahang bawah terhadap gigi-gigi rahang atas di mana lekuk mesiobukal molar satu permanen bawah berada lebih ke mesial dari tonjol mesiobukal molar satu permanen atas.
3. Jarak gigit (overjet), yaitu jarak horizontal antara tepi insisal insisivi atas ke tepi insisal insisivi bawah apabila rahang dalam hubungan sentrik (centric relation).

4. Tumpang gigit (overbite), yaitu jarak vertikal antara tepi insisal insisivi atas ke tepi insisal insisivi bawah apabila rahang dalam hubungan sentrik. Dalam keadaan normal, besarnya overbite ini sama dengan tertutupnya sebagian arah insisal mahkota klinis gigi insisivi bawah oleh gigi insisivi atas, kurang lebih 2 – 3 mm (tergantung ukuran insisogingival mahkota klinis gigi insisivi bawah),

Jika jarak tersebut lebih besar dari normal (lebih dalam) disebut deep overbite (dob), excessive bite, dan jika tepi mesial insisivi bawah mengenai palatum disebut palatal bite.
5. Gigitan terbuka (open bite), yaitu keadaan di mana terdapat celah atau ruangan atau tidak ada kontak di antara gigi-gigi atas dengan gigi-gigi bawah apabila rahang dalam keadaan hubungan sentrik.

6. Gigitan silang (cross bite), yaitu keadaan di mana satu atau beberapa gigi atas terdapat di sebelah palatinal atau lingu Maria gigi-gigi bawah. Dikenal beberapa macam cross bite:
 b. *Posterior cross bite*, macamnya:
 1) *Buccal cross bite* atau *outer cross bite*, yaitu keadaan di mana tonjol palatinal gigi posterior atas terdapat di sebelah bukal tonjol bukal gigi posterior bawah.
 2) *Lingual cross bite*, yaitu keadaan di mana tonjol bukal gigi posterior atas terdapat pada fossa sentral gigi posterior bawah.
 3) *Complete lingual cross bite* atau *inner cross bite* atau *scissor bite*, yaitu keadaan di mana tonjol bukal gigi posterior atas terdapat di sebelah lingual tonjol lingual gigi posterior bawah.
Gambar 5 :

a. anterior cross bite
b. buccal cross bite/ outer cross bite
c. lingual cross bite
d. complete lingual cross bite / inner cross bite/ scissor cross bite

- Istilah untuk menyatakan hubungan rahang terhadap dasar tulang kepala (basis cranii) Untuk ini diperlukan pengertian tiga bidang yang digunakan sebagai pedoman, yaitu:

 a. Bidang sagital, yaitu bidang vertikal yang melewati garis tengah (median line) rahang, tegak lurus terhadap bidang horisontal.

 b. Bidang transversal, yaitu bidang vertikal yang melewati kedua titik infraorbital kanan dan kiri, tegak lurus terhadap bidang horisontal. Bidang ini disebut juga bidang orbital (Simon)

 c. Bidang horisontal Frankfurt (FHP = Frankfurt Horizontal Plane), yaitu bidang horisontal yang melewati titik Tragus dan titik infraorbital
Istilah untuk menyatakan kedudukan rahang terhadap ketiga bidang tersebut:

a. Terhadap bidang sagital:
 2. Distraksi (*distraction*), yaitu kedudukan rahang yang menjauhi bidang sagital. Istilah distraksi digunakan untuk mendiagnosis pertumbuhan rahang ke arah lateral yang lebih dari normal.

b. Terhadap bidang transversal (bidang orbital)
 1. Protraksi (*protraction*) atau protrusi (*protrusion*), yaitu kedudukan rahang yang menjauhi bidang transversal atau bidang orbital.
 - Protrusi rahang atas : Protrusi maksila
 - Protrusi rahang bawah : Protrusi mandibula = prognasi = progeni
 - Protrusi RA dan RB : Protrusi bimaksiler
 2. Retraksi (*retraction*) atau retrusi (*retrusion*), yaitu kedudukan rahang yang mendekati bidang transversal atau bidang orbital.
 - Retraksi/ retrusi rahang bawah = retrognasi

c. Terhadap bidang horisontal (FHP)
 1. Atraksi (*attraction*), yaitu kedudukan rahang yang mendekati bidang horisontal
 2. Abstraksi (*abstraction*), yaitu kedudukan rahang yang menjauhi bidang horisontal.
Istilah untuk menyatakan penyimpangan posisi (malposisi) gigi individual. Untuk mendiagnosis malposisi suatu gigi harus memperhatikan hal-hal berikut:

1. Hubungan gigi tersebut dengan gigi lainnya pada rahang yang sama.
2. Hubungan gigi tersebut dengan gigi lainnya pada rahang yang berbeda.
3. Posisi gigi tersebut terhadap gigi sejenis pada rahang yang sama.
4. Posisi sumbu atau aksis gigi terhadap sumbu tulang alveolar.

Dengan memperhatikan keadaan-keadaan berikut, malposisi gigi dapat didiagnosis sebagai berikut:

a. Elongasi atau ekstrusi atau supraversi atau supraklusi, yaitu keadaan di mana gigi lebih tinggi dari garis oklusi.
b. Depresi atau intrusi atau infraversi atau infraklusi, yaitu keadaan di mana gigi lebih rendah atau tidak mencapai bidang oklusi.
c. Transversi, yaitu posisi gigi berpindah dari kedudukan normal. Macam-macam transversi:
d. Palatoversi : gigi lebih ke palatal dari normal.
e. Linguoversi : gigi lebih ke lingual dari normal.
f. Labioversi : gigi lebih ke labial dari normal.
g. Transposisi : gigi berpindah posisi erupsinya di daerah gigi lainnya.

h. Aksiversi : gigi seakan berpindah, tapi ujung sumbunya pada akar tetap.

i. Torsiversi : gigi berputar terhadap sumbunya, tapi kedua ujung sumbu tidak berubah.

Untuk keadaan ini harus dilihat : sisi mana dan ke arah mana gigi tersebut berputar.

Contoh : - Mesiolabio torsiversi, artinya tepi atau sisi mesial berputar ke arah labial.
- Distopalato torsiversi, artinya tepi atau sisi distal berputar ke arah palatinal.

Catatan : Aksiversi tidak sama dengan torsiversi.

Contoh : Mesiolabioversi, artinya posisi gigi di sebelah mesiolabial (berada lebih mesial dan labial dari posisi normalnya)
Mesiolabio torsiversi, artinya posisi gigi pada tempatnya, tapi sisi mesial berputar ke arah labial
 e). labioversi, f). transposisi, g). mesiolabio torsiversi
 h). distopalato torsiversi
II. PERTUMBUHAN DAN PERKEMBANGAN DENTOFASIAL

PENDAHULUAN

Sebelum melakukan perawatan ortodontik, mahasiswa dituntut untuk menguasai pengetahuan yang mendasari tindakan perawatan yang akan dilakukan. Selain itu juga dituntut untuk menguasai ilmu pengetahuan lain yang mendukung misalnya histologi dan anatomi khususnya bidang embriologi.

Dalam definisi ortodonsia jelas disebutkan bahwa selain mencegah dan membetulkan gigi-gigi yang tidak teratur juga bertugas mengawasi pertumbuhan dan perkembangan gigi-geligi dan struktur anatomi yang berhubungan dengan gigi-geligi tersebut. Maka dari itu pengetahuan tentang embriologi khususnya pertumbuhan dan perkembangan dentofacial sangatlah penting karena adanya kesalahan pada saat sedang bertumbuh dan berkembang akan menghasilkan kelainan pada gigi dan wajah seseorang. Anomali-anomali cranio-dentofacial terjadi kebanyakan sebagai akibat adanya ketidak seimbangan antara ukuran gigi dengan tulang penyayang gigi, atau adanya ketidak seimbangan antara masing-masing komponen cranio-dentofacial yang menyusun kompleks cranio-dentofacial. Perhitungan yang tepat tentang pertumbuhan dan perkembangan oklusi dan tulang craniofacial merupakan petunjuk yang perlu bagi berhasilnya suatu perawatan ortodontik. Peramalan besarinya pertumbuhan, tempat pusat-pusat pertumbuhan, arah dan waktu (jadwal) pertumbuhan menjadi sangat penting dalam hal ini.

Sebelum masuk ke pokok bahasan maka perlu dijelaskan lebih dahulu beberapa istilah yang penting :

a. Pertumbuhan (growth)

Adalah proses fisikokimia (biofisis) yang menyebabkan organisme menjadi besar

b. Perkembangan (development)

Adalah semua rentetan peristiwa (perubahan) yang berurutan dari pembuahan sel telur sampai menjadi dewasa.
c. Maturasi (maturation)

 Berarti masak, kemantapan (stabilitas) dari tahap dewasa yang dihasilkan oleh pertumbuhan dan perkembangan.

 Secara umum pola arah pertumbuhan dan perkembangan dentofacial adalah sama dengan organ tubuh yang lain yaitu ke arah depan belakang, ke samping dan ke arah atas bawah, tergantung titik mana yang dipakai sebagai acuan pengukuran.

 Beberapa aspek mengenai pertumbuhan dan perkembangan dentofacial yang meliputi pola arah pertumbuhan muka dan kepala, pertumbuhan dan perkembangan prenatal dan postnatal rahang serta pertumbuhan dan perkembangan gigi-geligi akan dibahas di dalam bab ini.

 Setelah membaca bab ini diharapkan mahasiswa mampu :
 1. Menjelaskan pola dan arah pertumbuhan muka dan kepala
 2. Menjelaskan pertumbuhan dan perkembangan prenatal dan postnatal rahang
 3. Menjelaskan pertumbuhan dan perkembangan sistem gigi-geligi

 ❖ POLA ARAH PERTUMBUHAN MUKA DAN KEPALA

 Bentuk wajah seseorang adalah hasil perpaduan antara pola dari gena yang berasal dari kedua orang tua dan akibat-akibat pengaruh faktor lingkungan, seperti nutrisi, penyakit dan lain sebagainya. Gena yang berasal dari orang tuanya berusaha untuk mempertahankan pola bentuk wajah yang asli, sedangkan faktor lingkungan dapat mempengaruhi jalannya pertumbuhan sehingga terjadi bentuk dan ukuran struktur fenotip tulang craniofacial yang lain dari pola aslinya. Tetapi
pengaruh lingkungan terhadap pola asli selama jalannya pertumbuhan dan perkembangan tidak akan menghilangkan sama sekali pola asli, dan pola asli akan tetap terlihat setelah anak menjadi dewasa.

Perawatan ortodonsi yang menggunakan daya tarik dan daya tekan terhadap tulang craniofacial akan mempengaruhi jalannya pertumbuhan. Dengan memperhatikan besar, arah, tempat dan lamanya kekuatan yang diberikan dapat dipengaruhi jalannya pertumbuhan sehingga diperoleh bentuk estetis dan fungsional optimal. Sampai berapa jauh perawatan ortodonsi dapat mempengaruhi pola asli, sehingga dapat dihasilkan bentuk wajah yang stabil merupakan tujuan perawatan ortodontik.

Di alam semesta ini dijumpai variasi yang tak kenal batas. Tidak dijumpai dua orang di antara bermilyar manusia di dunia yang mempunyai bentuk wajah yang sama, kecuali dua orang yang kembar satu telur. Variasi terjadi sebagai akibat kemungkinan kombinasi gena kedua orang tua dan juga sebagai akibat reaksi yang berlainan terhadap pengaruh lingkungan. Dengan adanya variasi bentuk wajah yang dianggap normal sukar untuk diberikan satu ukuran yang tetap, walaupun untuk satu-satu kelompok manusia. Untuk ini perlu difahami apa yang disebut normal.

Ukuran berat tubuh dan tinggi tubuh tidak menunjukkan adanya korelasi yang ukuran craniofacial, tetapi di klinik, ukuran tinggi dan berat tubuh dapat memberikan gambaran umum dari pertumbuhan anak. Klasifikasi tulang kepala dapat dilihat dengan Ro foto juga dapat memberikan gambaran adanya pertumbuhan yang abnormal atau adanya kelainan-kelainan yang luar biasa, tetapi tidak dapat secara tepat menunjukkan kemajuan pertumbuhan individual. Juga indeks karpal atau umur perkembangan gigi tidak dapat sebagai indeks untuk prognosa jalannya perawatan, melainkan hanya dapat menunjukkan kelainan atau malformasi yang besar.
Gambar 1 : Perbandingan bentuk tengkorak binatang dan manusia
Umur biologis. Disamping umur kronologis, pada pertumbuhan dan perkembangan ditandai adanya umur fisiologis atau disebut umur biologis. Umur fisiologis dipakai untuk menunjukkan pertumbuhan seseorang sudah mencapai suatu taraf, disamping umur seseorang yang ditunjukkan dengan tahun. Terdapat tiga bentuk umur fisiologis yaitu:

1. Berdasarkan pertumbuhan tulang (skeletal age)
2. Berdasarkan pertumbuhan gigi (dental age)
3. Berdasarkan perkembangan sistem fenetalia dengan sifat seksual sekunder.

Umur skeletal ditentukan dengan cara membuat gambaran radiografi daerah yang terdapat banyak tulang-tulang dan discus epiphyseal seperti tulang pergelangan tangan. Gambar radiografi tulang pergelangan tangan dari tiap-tiap
umur anak yang spesifik normal, dipakai sebagai standar untuk membandingkan kasus seseorang yang diperiksa. Gambaran standar yang dipakai sebagai gambaran baku tersebut disebut indeks karpal.

Umur dental ditentukan dengan dua cara:

a. Berdasarkan atas jumlah dan tipe elemen gigi yang kelihatan di mulut. Tidak hanya jumlah gigi saja, tetapi dalam dunia binatang dan antropologi ragawi derajat pemakaian okclusal gigi dipakai juga untuk menentukan umur gigi.

b. Umur dental ditentukan dengan membuat gambaran radiografi gigi desidui atau gigi permanen mandibula, gigi maxilla biasanya tidak digunakan. Gambaran gigi-gigi mandibula ini ditentukan sampai seberapa jauh tahap- tahap klasifikasi dan pembentukan akar gigi.

Umur seksual. Umur biologis yang berdasarkan sistem genetalia dan sifat seksual sekunder yang ditentukan dengan membedakan tahap- tahap pertumbuhan dan perkembangan buah dada, skrotum dan penis serta rambut-rambut pada daerah tersebut.

FAKTOR YANG MEMPENGARUHI PERTUMBUHAN DAN PERKEMBANGAN

A. Herediter (keturunan)

B. Lingkungan

1. Trauma
 a. Trauma prenatal
 b. Trauma postnatal

2. Agen fisik
 a. Prematur ekstraksi gigi susu
 b. Makanan
3. Kebiasaan buruk
 a. Mengisap jempol dan mengisap jari
 b. Menjulurkan lidah
 c. Mengisap dan menggigit bibir
 d. Posture
 e. Menggigit kuku
 f. Kebiasaan buruk lain

4. Penyakit
 a. Penyakit sistemik
 b. Penyakit endokrin
 c. Penyakit-penyakit lokal
 - Penyakit nasopharingeal dan gangguan pernapasan
 - Penyakit periodontal
 - Tumor
 - Karies
 - Premature loss gigi susu
 - Gangguan urutan erupsi gigi permanen
 - Hilangnya gigi permanen

5. Malnutrisi

C. Gangguan perkembangan oleh sebab yang tidak diketahui

A. HERIDITER

Sudah lama diketahui bahwa faktor heriditer sebagai penyebab maloklusi. Kerusakan genetik mungkin akan tampak setelah lahir atau mungkin baru tampak beberapa tahun setelah lahir. Peran heriditer pada pertumbuhan kraniofasial dan sebagai penyebab deformitas dentofasial sudah banyak dipelajari, tetapi belum banyak diketahui bagian dari gen yang mana berperan dalam pemasakan muskulatur orofasial.
Contoh:

SINDROMA MALFORMASI YANG BERHUBUNGAN DENGAN DEFISIENSI MANDIBULA

<table>
<thead>
<tr>
<th>Kondisi</th>
<th>Penampakan</th>
<th>Penyebab</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Robin complex</td>
<td>Micrognathia, cleft palate, glossoptosis</td>
<td>Autosomal dominant</td>
</tr>
<tr>
<td>2. Sindroma Teacher Collin’s Acrofacial Dysostosis</td>
<td>Symetrically hypoplastic ear, down slanting palpebral fissures, micrognathia, cleft palate, preaxial upper limb deficiency</td>
<td>Autosomal dominant</td>
</tr>
<tr>
<td>3. Sindroma Wildervanck-Smith</td>
<td>Symetrically hypoplastic ear, down slanting palpebral fissures, cleft lip and palate, limb reduction defects of upper and lower limbs</td>
<td>Belum diketahui</td>
</tr>
<tr>
<td>4. Hemifacial Microsomia (sindroma Goldenhar)</td>
<td>Unilateral atau bilateral asymetrically hipoplastik ears dan ramus mandibula, micrognathia, cleft lip and palate, epibulbar dermoids, vertebral anomalies, cardiac defects, renal anomalies.</td>
<td>Autosomal dominant or autosomal recessive</td>
</tr>
<tr>
<td>5. Sindroma Mobius</td>
<td>Bilateral sixth & seventh nerve palsy and other cranial nerve, high broad nasal bridge, epicanthic folds, micrognathia, limb reduction, mental deficiency.</td>
<td>Belum diketahui</td>
</tr>
<tr>
<td>6. Sindroma Hallermann-Streiff</td>
<td>Dyscephaly, hypotrichosis, congenital cataracts, beaced nose, micrognathia, anteriorly placed mandibular condyles, natal teeth, oligodontia</td>
<td>Belum diketahui</td>
</tr>
</tbody>
</table>
B. LINGKUNGAN

Pengaruh lingkungan pada pertumbuhan dan perkembangan akan terjadi terus menerus selama individu masih bertumbuh dan berkembang.

Ada beberapa pengaruh lingkungan yang dapat menyebabkan kelainan pada pertumbuhan dan perkembangan kraniofasial:

1. TRAUMA
 a. Trauma prenatal
 - Hipoplasia mandibula dapat disebabkan oleh tekanan intrauterin atau trauma selama kelahiran.
 - “Vogelgesicht” pertumbuhan mandibula terhambat berhubungan dengan ankilosis persendian temporomandibularis, mungkin disebabkan karena cacat perkembangan oleh trauma.
 - Asimetri. Lutut atau kaki dapat menekan muka sehingga menyebabkan asimetri pertumbuhan muka dan menghambat pertumbuhan mandibula.
 b. Trauma postnatal
 - Fraktur rahang atau gigi
 - Trauma pada persendian temporomandibularis menyebabkan fungsi dan pertumbuhan yang tidak seimbang sehingga terjadi asimetri dan disfungsi persendian.

2. AGEN FISIK
 a. Ekstraksi prematur gigi susu
 Bila gigi susu hilang sebelum gigi permanen pengganti mulai erupsi (mahkota terbentuk sempurna dan akar mulai terbentuk), tulang akan terbentuk diatas gigi permanen, menyebabkan erupsi terlambat, terlambatnya erupsi akan menyebabkan gigi yang lain bergeser ke arah ruang yang kosong.
 b. Jenis makanan
 Pada masyarakat primitif, diet yang berserat merangsang otot mastikasi bekerja keras, menambah beban fungsi pada gigi. Diet semacam ini
mencegah karies, mempertahankan lebar lengkung gigi tetapi menyebabkan atrisi pada gigi.

Pada masyarakat modern, diet berubah menjadi lunak dan kurang berserat, menyebabkan beberapa maloklusi dan kariogenik. Berkurang fungsi penguyahan dan menyebabkan kontraksi lengkung gigi, tidak terjadi atrisi, tidak terjadi penyesuaian okclusal seperti yang terjadi pada perkembangan normal.

3. KEBIASAAN BURUK

Beberapa kebiasaan merangsang pertumbuhan rahang secara normal misalnya gerakan bibir dan penguyahan yang fisiologis. Kebiasaan abnormal mempengaruhi pola pertumbuhan fasil yang akan mempengaruhi fungsi orofasial yang mempunyai pengaruh penting pada pertumbuhan kraniofasial dan fisiologi okclusal.

Kebiasaan buruk dan kebiasaan otot menghambat pertumbuhan tulang, malposisi gigi, hambatan pernapasan, gangguan bicara, keseimbangan otot fasial dan problem psikologis.

a. Mengisap jempol dan mengisap jari

 Arah dan kekuatan pada gigi-gigi selama mengisap jempol menyebabkan incisivus atas tertekan ke labial, incisivus bawah tertekan ke lingual, otot-otot pipi menekan lengkung gigi pada daerah lateral ke arah lingual.

b. Menjulurkan lidah

 Ada 2 tipe:

1. Simple tongue thrust swallow

 Biasanya berhubungan dengan kebiasaan mengisap jari.

2. Complex tongue thrust swallow
Biasanya disebabkan oleh karena gangguan nasorespiratori kronis, bernapas lewat mulut, tosilitis atau pharingitis.
Pada penelanan normal, gigi dalam kontak, bibir menutup, punggung lidah terangkat menyentuh langit-langit. Pada penelanan abnormal yang disebabkan pembengkakan tonsil atau adenoid, lidah tertarik dan menyentuh tonsil yang bengkak, akan menutup jalan udara, mandibula turun, lidah menjulur ke depan menjauhi pharynx, dengan mandibula turun bibir harus berusaha menutup untuk menjaga lidah dalam rongga mulut dan menjaga efek penelanan dapat rapat sempurna.
Diastemata dan open bite anterior merupakan akibat dari kebiasaan menjulurkan lidah.

c. Mengisap dan menggigit bibir
 Mengisap bibir dapat sendiri atau bersamaan dengan mengisap ibu jari.
 Dapat dilakukan pada bibir atas atau pada bibir bawah.
 Bila dilakukan dengan bibir bawah maka maloklusi yang ditimbulkan adalah labioversi gigi depan atas, open bite, lunguoversi gigi depan rahang bawah.

d. Posture
 Sikap tubuh mempengaruhi posisi mandibula. Seseorang dengan sikap kepala mendongak, dagu akan menempati posisi ke depan, pada sikap kepala menunduk maka pertumbuhan mandibula bisa terhambat.

e. Mengigit kuku
 Menyebabkan malposisi gigi.

f. Kebiasaan buruk yang lain
 Kebiasaan menggendong bayi hanya pada satu sisi menyebabkan kepala dan muka menjadi asimetri.
 Kebiasaan atau posisi tidur, dengan bantal atau dengan lengan, bertopang dagu.
 Kebiasaan mengigit pensil dan lain-lain.
4. PENYAKIT

a. Penyakit sistemik

Contoh penyakit yang dapat menimbulkan maloklusi

- Rachitis
 Kekurangan vitamin D, pengapuran tulang berkurang sehingga terjadi deformasi tulang. Pada rahang ditandai dengan tepi prosesus alveolaris abnormal dan pembentukan email gigi terganggu.

- Sifilis
 Menyebabkan kelainan bentuk gigi (hutchinson teeth) terutama sifilis kongenital.

- TBC tulang
 Menyebabkan kelainan bentuk tulang terutama pada mandibula.

b. Kelainan endokrin

Ketidakseimbangan kelenjar endokrin mempengaruhi metabolisme zat-zat yang ada dalam tubuh.

Hiperfungsi atau hipofungsi kelenjar endokrin akan menyebabkan gangguan metabolik dan dapat menyebabkan gangguan pertumbuhan perkembangan kraniodentofasial.

Misalnya:

Hipoplasia gigi, menghambat atau mempercepat pertumbuhan muka tetapi tidak merubah arah pertumbuhan, menggangu osifikasi tulang, waktu menutupan sutura, waktu erupsi gigi, waktu resorpsi akar gigi susu, membrana periodontalis dan gingiva sensitif terhadap gangguan endokrin.

c. Penyakit-penyakit lokal

- Penyakit nasopharingeal dan gangguan pernapasan
- Penyakit periodontal
- Tumor
- Karies
- Prematur loss gigi susu
- Gangguan urutan erupsi gigi permanen
- Hilangnya gigi permanen

5. MALNUTRISI

C. GANGGUAN PERKEMBANGAN OLEH SEBAB YANG TIDAK DIKETAHUI

Gambar 3
Treacher Collins Syndrome (mandibulofacial dysostosis)

- coloboma of lower lid
- cilia absent medial to coloboma
- piosis of upper eyelid
- hypoplastic zygomatic arches
- micrognathism
- abnormal hair growth on cheek
- malformed ear

Gambar 4
III. KELAINAN DENTOFASIAL

❖ PENDAHULUAN
Klasifikasi maloklusi dan oklusi

Occlusion = Oklusi

Pengertian
Oklusi adalah hubungan gigi geligi rahang atas dan rahang bawah bila rahang bawah digerakkan sehingga rahang atas dan rahang bawah dalam keadaan menutup.

Definisi:
Oklusi adalah hubungan timbal balik permukaan gigi-geligi rahang atas dan rahang bawah yang terjadi selama gerakan mandibula sampai terjadi kontak maksimal.

GIGI ™ FUNGSI ™ ATRISI

Ideal :
Tidak ada oklusi ideal, hanya terdapat pada gigi tiruan lengkap yang disusun oleh prostodontis.

Bagi Ortodontis :
Hal ini merupakan tujuan perawatan yang sukar dicapai.

Macam-macam Oklusi :
Maksila tetap, mandibula bergerak, maka oklusi tidak statis sehingga ada beberapa oklusi, yaitu:
Oklusi habitual, distal, labial, lingual, supra oklusi dan infra oklusi
Dalam bidang Ortodonsi ada beberapa istilah oklusi, yaitu:

1. Oklusi ideal
2. Oklusi normal
3. Oklusi normal individual

Normal adalah suatu keadaan dimana variasi-variasi masih terdapat di sekitar nilai rata-rata. Dalam bidang Ortodonsia, istilah normal dapat diartikan sama dengan ideal dan keadaan ini akan menyulitkan pengertian perawatan. Sehingga ideal atau normal dihubungkan dengan konsep pendugaan atau tujuan yang akan dicapai sehingga digunakan istilah oklusi normal individual.

1. OKLUSI IDEAL

Syarat oklusi ideal:

a. Bentuk mahkota gigi normal, ukuran mediodistal dan bukolingual tepat.

b. Gigi, jaringan sekitarnya, tulang dan otot, perbandingan anatomiannya normal.

c. Semua bagian yang membentuk gigi-geligi, geometris dan anatomi atau secara bersama memenuhi hubungan tertentu.

d. Gigi-geligi terhadap rahang bawah, rahang atas dan kranium mempunyai hubungan geometris dan anatomi tertentu.

2. OKLUSI NORMAL (Wheeler, 1965)

Faktor-faktor yang harus dipertimbangkan:

a. Susunan deretan gigi pada lengkung gigi

b. Kurve kompensasi lengkung gigi

c. Sudut inklinasi gigi

d. Kurve kompensasi poros masing-masing gigi

e. Bentuk fungsional gigi pada 1/3 bagian incisal

f. Hubungan permukaan tiap gigi antagonis pada waktu oklusi sentrik.

3. OKLUSI NORMAL INDIVIDUAL

Yang dimaksud adalah oklusi normal dengan variasi-variasi yang masih termasuk dalam batas-batas normal yang cocok bagi seseorang.
Syarat Oklusi Normal:

a. Lengkung gigi rahang atas lebih besar dari rahang bawah (over jet)
b. Permukaan oklusal: lengkung gigi rahang atas lebih cembung dari rahang bawah.
c. Dalam satu lengkung, tiap gigi mempunyai kontak interproksimal yang baik.
d. Poros gigi sesuai dengan syarat fisikalis yang harus dipenuhi di dalam lengkung barisan gigi.
e. Tiap gigi mempunyai bentuk anatomis dan fungsi yang baik.
f. Tiap rahang dalam lengkung rahang atas mempunyai kontak yang baik dengan tiap gigi rahang bawah.
g. Kontak oklusal dan hubungan antar tonjol semua gigi pada satu lengkung dengan lengkung antagonisnya pada oklusi sentrik.
h. Kontak oklusal dan hubungan antar tonjol semua gigi pada bermacam-macam gerak fungsi mandibula.

KELAINAN DENTOFASIAL = DENTOFACIAL ANOMALI

1. Besar gigi dipengaruhi oleh ras dan keturunan
2. Bentuk gigi dipengaruhi:
 Ras: Gigi incisivus pertama orang Afrika permukaan lingualnya lebih halus.
 Keturunan: Besar setelah erupsi tidak berubah
3. Jumlah gigi: yang sering mengalami agenese adalah: M3, I2, P2, I1, P1
4. Posisi gigi: Inklisisi aksial, tonjol gigi yang rendah; tonjol gigi yang lebih tinggi, rotasi, hal ini akan mempengaruhi bentuk lengkung gigi, aktivitas TMJ, fungsi otot perioral atau sekitar mulut.

Faktor-faktor yang dapat menyebabkan maloklusi:

1. Keturunan
2. Lingkungan
3. Fungsional

Maloklusi adalah hal yang menyimpang dari bentuk standar yang diterima sebagai bentuk normal.

❖ GOLONGAN MALOKLUSI :
 1. Dental displasia
 2. Skeleto Dental displasia
 3. Skeletal displasia

1. Dental displasia :
 • maloklusi bersifat dental, satu gigi atau lebih dalam satu atau dua rahang dalam hubungan abnormal satu dengan lain.
 • Hubungan rahang atas dan rahang bawah normal
 • Keseimbangan muka dan fungsi normal
 • Perkembangan muka dan pola skeletal baik

Macam-macam kelainan :
Misalnya : kurang tempatnya gigi dalam lengkung, oleh karena prematur loss, tambalan kurang baik, ukuran gigi lebih besar, sehingga dapat terjadi keadaan linguiversi, labioversi dan sebagainya.

2. Skeleto Dental displasia

 Tidak hanya giginya yang abnormal, tetapi dapat terjadi keadaan yang tidak normal pada hubungan rahang atas terhadap rahang bawah, hubungan rahang terhadap kranium, fungsi otot dapat normal atau tidak tergantung macam kelainan dan derajat keparahan kelainan tersebut.

3. Skeletal Displasia

 Dalam kelainan skeletal displasia terdapat hubungan yang tidak normal pada :

 a. Hubungan anteroposterior rahang atas dan rahang bawah terhadap basis kranium.
 b. Hubungan rahang atas dan rahang bawah
c. Posisi gigi dalam lengkung gigi normal

❖ KLASIFIKASI MALOKLUSI

Tujuan:
Untuk menggolongkan maloklusi ke dalam kelompok-kelompok dimana tiap-tiap kelompok memiliki sifat-sifat khas yang mudah ditandai dan mempunyai variasi yang pokok.
Maksud:
Memudahkan analisa etiologi, cara perawatan dan prognosa tiap-tiap kelompok.

❖ KLASIFIKASI ANGLE

Dasar:
Hubungan mesiodistal yang normal antara gigi-geligi rahang atas dan rahang bawah.
Sebagai kunci oklusi digunakan gigi M1 atas.
Dasar pemilihan:
1. Merupakan gigi terbesar
2. Merupakan gigi permanen yang tumbuh dalam urutan pertama
3. Tidak mengganti gigi desidui
4. Bila pergeseran gigi M1 maka akan diikuti oleh pergeseran poros gigi lainnya.
5. Jarang mengalami anomali

1. Kelas I Angle = Neutro Oklusi
 Jika mandibula dengan lengkung giginya dalam hubungan mesiodistal yang normal terhadap maksila.
 Tanda-tanda:
 a. Tonjol mesiobukal gigi M1 atas terletak pada celah bagian bukal (buccal groove) gigi M1 bawah.
 b. Gigi C atas terletak pada ruang antara tepi distal gigi C bawah dan tepi mesial P1 bawah.
c. Tonjol mesiolingual M1 atas beroklusi pada Fossa central M1 bawah.

2. Kelas II Angle = Disto oklusi
 Jika lengkung gigi di mandibula dan mandibulanya sendiri dalam hubungan mesiodistal yang lebih ke distal terhadap maksila.
 Tanda-tanda :
 a. Tonjol mesiobukal M1 atas terletak pada ruangan diantara tonjol mesiobukal M1 bawah dan tepi distal tonjol bukal P2 bawah.
 b. Tonjol mesiolingual gigi M1 atas beroklusi pada embrasur dari tonjol mesiobukal gigi M1 bawah dan tepi distal tonjol bukal P2 bawah.
 c. Lengkung gigi di mandibula dan mandibulanya sendiri terletak dalam hubungan yang lebih ke distal terhadap lengkung gigi di maksila sebanyak 1’2 lebar mesiodistal M1 atau selebar mesiodistal gigi P.

Kelas II Angle dibagi menjadi 2 yaitu Divisi 1 dan divisi 2 :
 a. Kelas II Angle Divisi 1 :
 Jika gigi-gigi anterior di rahang atas inklinasinya ke labial atau protrusi
 b. Kelas II Angle Divisi 2 :
 Jika gigi-gigi anterior di rahang atas inklinasinya tidak ke labial atau retrusi.
 Disebut sub divisi bila kelas II hanya dijumpai satu sisi atau unilateral.

3. Kelas III Angle
 Jika lengkung gigi di mandibula dan mandibulanya sendiri terletak dalam hubungan yang lebih ke mesial terhadap lengkung gigi di maksila.
 Tanda-tanda :
 a. Tonjol mesiobukal gigi M1 atas beroklusi dengan bagian distal tonjol distal gigi M1 bawah dan tepi mesial tonjol mesial tonjol mesial gigi M2 bawah.
 b. Terdapat gigitan silang atau gigitan terbalik atau cross bite anterior pada relasi gigi anterior.
c. Lengkung gigi mandibula dan mandibulanya sendiri terletak dalam hubungan yang lebih mesial terhadap lengkung gigi maksila.

d. Tonjol mesiobukal gigi M1 atas beroklusi pada ruangan interdental antara bagian distal gigi M1 bawah dengan tepi mesial tonjol mesial gigi M2 bawah.
V. EKSPANSI

PENDAHULUAN

Dalam melakukan perawatan ortodontik sering sekali diperlukan penambahan ruang untuk mengatur gigi-gigi yang malposisi, sehingga setelah perawatan gige-gigi dapat tersusun dalam lengkung yang baik. Tergantung pada jumlah kekurangan ruang yang diperlukan untuk mengatur gige-gigi yang malposisi tersebut, dapat dilakukan:

1. Grinding/ slicing/ stripping pada gige-gigi anterior
2. Melebarkan (ekspansi) perimeter lengkung gige
3. Kombinasi antara ekspansi lengkung gige dan grinding gige-gigi anterior
4. Pencabutan satu atau beberapa gige.

Pelebaran dengan alat ekspansi dapat dilakukan secara ortodontik (pelebaran lengkung gige) maupun ortopedik (pelebaran lengkung basal). Pelebaran lengkung gige sangat efektif dilakukan pada periode gige bercampur, waktu sutura palatina belum menutup dan pertumbuhan pasien masih aktif sehingga selain lengkung gige (lengkung koronal) melebar, maka lengkung basal juga mengalami pelebaran. Pada periode gige permanen hanya dapat dilakukan perubahan inklinasi gige saja, yaitu melebarkan lengkung gige tanpa diikuti pelebaran lengkung basal.

Macam alat ekspansi

a. Berdasarkan cara pemakaiannya alat ekspansi dapat bersifat:

1. Fixed/ cekat, misalnya RME (Rapid Maxillary Expansion)
2. Semi cekat, misalnya Quad Helix.
3. Removable/ lepasan, misalnya plat ekspansi

b. Berdasarkan pergerakan/ reaksi jaringan yang dihasilkan :

1. Alat ekspansi yang menghasilkan gerakan ortodontik , misalnya : plat ekspansi
2. Alat ekspansi yang menghasilkan gerakan ortopedik, misalnya RME.

RAPID MAXILLARY EXPANSION

Alat ini bersifat cekat, menghasilkan pelebaran arah lateral, paralel dan simetris, digunakan untuk melakukan pelebaran lengkung basal pada periode gigi bercampur. RME terdiri dari cincin stainless yang disemenkan pada gigi-gigi molar satu desidui atau premolar satu dan gigi molar satu permanen kanan dan kiri, dihubungkan dengan sekrup ekspansi yang mempunyai daya pelebaran yang besar. Dengan alat ini terjadi pelebaran sutura palatina mediana ke arah lateral dan lengkung gigi bergerak secara bodily.

Indikasi perawatan dengan ekspansi

1. Gigitan silang anterior (anterior crossbite)
2. Gigitan silang posterior (posterior crossbite) bilateral atau unilateral
3. Lengkung gigi atau lengkung basal yang sempit yang disebabkan pertumbuhan ke arah lateral kurang
4. Adanya "space loss", sebagai akibat pergeseran gigi molar permanen ke mesial pada pencabutan gigi desidui terlalu awal (premature loss)
5. Adanya gigi depan berjejal yang ringan, dengan diskrepansi lengkung gigi 4 – 6 mm.

QUAD HELIX

Alat ini bersifat semi cekat, dapat menghasilkan gerakan paralel simetris atau asimetris maupun gerakan non paralel simetris atau asimetris, tergantung kebutuhan. Semi cakat, karena sebagian dapat dilepas untuk diaktifkan (bagian ekspansif yang terbuat dari kawat stainless steel diameter 0,9 mm) dan cincin yang dipasang cekat dengan semen pada kedua gigi molar pertama. Pelebaran lengkung gigi diperoleh dengan cara mengaktifkan coil, lengan helix ataupun palatal bar, tergantung arah pelebaran yang diharapkan.
PLAT EKSPANSI

Plat ekspansi merupakan alat ortodontik lepasan yang sering digunakan pada kasus gigi depan berjejal yang ringan. Kekurangan ruang guna mengatur gigi-gigi tersebut diperoleh dengan menambah perimeter lengkung gigi menggunakan plat ekspansi. Pada pasien dewasa, pelebaran yang dihasilkan merupakan gerakan ortodontik, yaitu hanya melebarkan lengkung gigi dengan cara tipping, merubah inklasani gigi.

Sifat plat ekspansi

1. Lepasan atau removable : alat bisa dipasang dan dilepas oleh pasien
2. Aktif : mempunyai sumber kekuatan untuk menyrakkan gigi, yaitu sekrup ekspansi atau coffin spring, atau pir-pir penolong (auxiliary spring).
3. Mekanis : merubah posisi gigi secara mekanis
4. Stabilitas tinggi : alat tidak mudah lepas, karena retensi yang diperoleh dari Adams clasp atau Arrowhead clasp serta verkeilung dari plat dasar yang menempel pada permukaan lingual atau palatinal gigi.

Elemen-elemen plat ekspansi

Plat ekspansi terdiri dari:

1. Plat dasar akrilik
2. Klamer yang mempunyai daya retensi tinggi, misalnya Adam’s clasp atau Arrowhead clasp.
3. Elemen ekspansif, dapat berupa sekrup ekspansi maupun coffin spring
4. Busur labial (labial arch)
5. Kadang dilengkapi juga dengan spur atau taji, tie-bar dan pir-pir penolong (auxiliary spring).
Ad. 1. Plat dasar
Plat dasar akrilik tidak boleh terlalu tebal dan harus dipoles licin supaya enak dipakai dan mudah dibersihkan. Bagian verkeilung plat harus menempel pada permukaan lingual/ palatinal gigi-gigi, karena dapat menambah daya penjangkar. Antara plat yang menempel pada gigi penjangkar (anchorag) dan gigi attachment terdapat belahan atau separasi.

Ad. 2. Klamer
Plat ekspansi memerlukan retensi dan stabilitas yang tinggi sehingga maksud pelebaran lengkung gigi dapat tercapai. Stabilitas diperoleh dengan menggunakan klamer yang mempunyai daya retensi tinggi misalnya Adam’s clasp atau Arrowhead clasp yang dibuat dari kawat stainless steel diameter 0,7 mm.

Ad. 3. Elemen ekspansif
Elemen ekspansif dapat berupa sekrup ekspansi (expansion screw) yang dibuat oleh pabrik atau berupa coffin spring yang dibuat sendiri dari kawat stainless diameter 0,9 – 1,25 mm. Sekrup ekspansi terdapat bermacam-macam, tapi dasar kerjanya sama. Tersedia berbagai tipe, antara lain:
- tipe Badcock
- tipe Fisher
- tipe Glenross
- tipe Wipla dll.

Tiap sekrup mempunyai 4 lubang, dilengkapi dengan kunci pemutar. Kekuatan yang dihasilkan sekrup bersifat intermittent (berselang-seling). Gambar anak panah pada sekrup menunjukkan arah pengaktifan. Sekrup ekspansi dibuat untuk pembukaan 0,18 mm – 0,20 mm setiap seperempat putaran (90°).

Pemutaran sekrup dilakukan ¼ putaran setiap hari atau 2 X ¼ putaran setiap minggu, tergantung pada setiap kasus dan arah pelebaran yang diharapkan.
Gambar 3: A. Tipe Badcock B. Glenross C. Fisher D. Sekrup dengan wing (Graber, 1984)

Gambar 4: a. Penampang melintang sekrup ekspansi
b. Cara pengaktifan sekrup ekspansi (Graber, 1984)

Selain sekrup, elemen ekspansif lainnya adalah Coffin yang dibuat dari kawat stainless steel diameter 0,9 – 1,25 mm. Kekuatan yang dihasilkan coffin bersifat kontinyu. Plat ekspansi dengan coffin dapat menghasilkan gerakan paralel simetris atau asimetris maupun gerakan non paralel simetris atau asimetris, tergantung pengaktifan.
Busur labial pada plat ekspansi dibuat dari kawat stainless steel diameter 0,7 mm. Di samping dapat menambah daya retensi alat, busur labial ini dapat digunakan untuk meretraksi gigi-gigi anterior yang protrusi. Pada pelebaran lengkung gigi ke anterior, misalnya pada kasus di mana terdapat gigitan silang pada gigi-gigi depan (*anterior crossbite*), busur labial ini tidak diperlukan dan untuk menambah retensi alat ditambahkan *spur* atau taji yang dipasang di sebelah distal insisivi lateral atau Adams clasp untuk keempat insisivi atas.

Macam – macam plat ekspansi

A. Ekspansi arah lateral

1. Paralel: a. simetris
 b. asimetris
2. Non paralel (radial): a. simetris
 b. asimetris

B. Ekspansi arah antero-posterior (Schwartz plate)

1. Pergerakan ke distal gigi-gigi posterior
A.1.a. Ekspansi arah lateral secara paralel, simetris

Plat ekspansi ini paling banyak digunakan, mempunyai bentuk sederhana tapi kuat dan hasil memuaskan. Fungsi pokok adalah melebarkan lengkung gigi ke arah lateral secara paralel, jadi disini gerakannya secara resiprokal. Gerakan prosesus alveolaris dalam mengikuti gerakan plat dapat dicapai dengan cepat tapi penguatan jaringan sekitar gigi berjalan lebih lambat.

Selain berfungsi untuk melebarkan lengkung gigi, alat ini dapat digunakan untuk meretruksi atau meretraksi gigi-gigi insisivi yang protrusif. Untuk keperluan ini plat ekspansi dilengkapi dengan busur labial.

Gambar 6 : Plat ekspansi lateral paralel, simetris (
Graber, 1084)

Cara kerja alat

Jika gerakan retrusi gigi-gigi insisivi belum memungkinkan misalnya ruangan belum cukup, maka tekanan busur labial terhadap gigi harus dihindari dengan jalan melebarkan U-loop. Setelah alat diaktifkan beberapa kali dan ruangan yang diperlukan sudah cukup, busur labial diaktifkan dengan cara memperkecil atau mempersempit U-loop dan plat akrilik di sebelah palatinal gigi insisive dikurangi.
Dalam perawatan dengan plat ekspansi, mungkin ada satu atau beberapa gigi yang tidak perlu diekspansi. Oleh karena itu pada waktu alat diaktifkan plat disebelah palatinal gigi yang akan dipertahankan harus dikurangi agar gigi tersebut bebas dari tekanan.

Pada waktu pembuatan plat ekspansi untuk gerakan arah lateral secara paralel dan simetris, penempatan sekrup secara tepat merupakan faktor yang penting dalam perawatan. Sekrup dipasang sedekat mungkin dengan palatum agar plat tidak terlalu tebal, tepat di tengah-tengah palatum (linea mediana) antara kedua gigi premolar pertama. Sumbu panjang sekrup paralel dengan bidang oklusal, arah putaran ke belakang. Sekrup diaktifkan ¼ putaran (90°) 2 X seminggu atau 2 X ¼ putaran (180°) sekali seminggu. Agar plat bisa bergerak ke arah lateral pada waktu sekrup diaktifkan, plat akrilik diseparasi atau dibelah dibagian tengah.

A.1.b. Ekspansi arah lateral secara paralel, asimetris

Alat ini digunakan untuk mengoreksi kelainan gigitan silang pada gigi posterior satu sisi (unilateral-posterior crossbite). Hambatan akibat tonjol gigi antagonis dihindarkan dengan memberi dataran peninggi gigitan (bite raiser) posterior. Peningkatan anchorage dilakukan dengan menambah plat akrilik yang menutup permukaan lingual gigi antagonis pada sisi yang normal. Spur (taji) dipasang pada gigi anchorage maupun gigi attachment untuk menambah retensi dan stabilitas alat. Retensi diperoleh dengan pemasangan Adams clasp (klamer Adam) pada gigi-gigi 6 4 / 4 6, sedang spur dibuat dari kawat 0,6 mm. Sekrup dipasang paralel dengan bidang oklusal.
Cara pengaktifan: sekrup diputar 2 X ¼ putaran (180°) sekali seminggu.

Gambar 7: Plat ekspansi arah lateral, paralel, asimetris (Dickson, 1977)

A.2.a. Ekspansi arah lateral non paralel, simetris

Alat ekspansi ini sering disebut ekspansi secara radial, biasanya digunakan untuk ekspansi lengkung bagian anterior (C – C) dan sedikit di daerah Premolar pertama, sedangkan gigi-gigi posterior lainnya dipertahankan kedudukannya.

Alat ini modifikasi antara sekrup ekspansi dan tie-bar yang terletak pada bagian terdistal plat di garis tengah. Sering juga dilengkapi dengan box-in safety pin spring (spring yang diletakkan dalam rongga plat) untuk proklinasi gigi-gigi insisivus yang retrusi atau palatoversi.

Gerakan plat ekspansi direncanakan tidak paralel, sehingga apabila alat diaktifkan bagian anterior akan melebar tapi bagian posterior tetap. Hal ini dapat diperoleh apabila diagunakan sekrup yang agak longgar, dibuat dari logam yang lunak, misalnya sekrup tipe Badcock dengan guide arm atau guide pin yang dipotong. Tie bar dibuat dari kawat stainless steel diameter 0,9 – 1,25 mm.
Gambar 8: Plat ekspansi lateral non paralel, simetris

Cara kerja alat

Pada waktu alat diaktifkan, oleh karena plat bagian posterior ditahan oleh tie bar, maka plat bagian posterior tetap sedang bagian anterior melebar.

Kontruksi safety-pin dibuat dengan tujuan: pada waktu sekrup diaktifkan, plat akan melebar dan safety-pin spring akan bergerak ke depan sehingga akan mendorong gigi insisivus yang retrusi/retroklinasi menjadi proklinasi. Untuk menghindari spring meluncur ke insisal akibat bentuk permukaan palatinal insisivus tersebut, spring harus ditutup atau dilindungi di dalam box. Retensi dan stabilitas dapat ditingkatkan dengan tambahan clasp yang diletakkan se anterior mungkin, misalnya pada premolar pertama.

Safety-pin spring dibuat dari kawat stainless steel diameter 0,4 – 0,6 mm yang dilengkapi dengan 4 coil masing-masing berdiameter 0,2 – 0,3 mm. Ke-4 coil harus terletak segaris dan horisontal. Panjang spring yang menempel di kedua gigi insisivus harus sedikit lebih pendek dari jumlah lebar mesiodistal kedua gigi tersebut. Basis spring tidak boleh menempel pada sekrup. Spring ditanam pada model kerja dan ditutup dengan gips keras, kecuali bagian basis. Tie bar dibuat dari kawat berdiameter 0,9 – 1,25 mm. Klamer yang dipakai adalah Adams clasp pada kedua gigi Premolar pertama dengan kawat 0,6 mm dan kedua gigi molar pertama dengan kawat 0,7 mm.
A.2.b. Ekspansi arah lateral non paralel (radial), asimetris

Alat ini digunakan sebagai space regainer di daerah anterior, untuk menyediakan ruangan bagi insisivus lateral yang mesio-labioversi.

- Sekrup : soft metal, tipe Badcock
- Retensi : Adams clasp pada gigi 6 4 / 4 6
- Tie-bar : 0,9 mm, stainless steel
- Spur : pada gigi 3 1/

Pengaktifan : 2 X ¼ putaran sekali seminggu.

Gambar 9 : plat ekspansi radial, asimetris (Dickson, 1977)

B.1. Ekspansi arah antero-posterior untuk pergerakan ke distal gigi-gigi segmen bukal (Schwartz plate)

Gambar 10 : Schwartz plate untuk menggeser segmen bukal ke distal (Dickson, 1977)

Alat ini juga dapat dipergunakan sebagai space regainer, yaitu untuk mendapatkan kembali ruang yang menyempit akibat pencabutan gigi desidui yang terlalu awal, sedang gigi tetangganya telah menggeser ke ruang bekas pencabutan, sehingga ruang untuk erupsinya gigi permanen penggantinya tidak cukup. Dengan alat ekspansi ini gigi molar yang telah bergerak ke mesial digeser ke distal, sampai ruangan yang menyempit diperoleh kembali, sehingga gigi permanen pengganti gigi desidui yang hilang dapat erupsi normal. Alat ini membutuhkan retensi dan stabilitas yang besar.

Gambar 11 : plat ekspansi sebagai space regainer (Graber, 1984)

B.2. Ekspansi arah antero-posterior untuk pergerakan ke labial (proklinasi) gigi-gigi depan (Schwartz plate).

Modifikasi pada plat ekspansi

Kadang-kadang plat ekspansi arah lateral dilengkapi dengan alat untuk extra oral traction, misalnya pada kasus Klas II Angle yang ringan dimana hubungan molar pertama permanen sedikit distoklusi. Alat ini dilengkapi dengan busur yang dipatrikan pada busur labial. Kedua ujung bebas busur luar ini dihubungkan dengan tali elastik yang disangkutkan pada kepala atau leher pasien (dikenal dengan istilah head gear). Busur luar ini dibuat dari kawat stainless steel diameter 1,25 – 1,5 mm, busur labial dari kawat 0,9 mm. Retensi dengan Adams claps pada gigi-gigi 6 4 / 4 6, sekrup ekspansi dari hard metal atau coffin spring dari kawat 1,25 mm.

Perawatan dengan memakai alat ini selain melebarkan lengkung gigi ke arah lateral, juga untuk mengoreksi hubungan molar rahang atas dan rahang bawah.

CATATAN

2. Telah diterangkan dimuka bahwa plat ekspansi sangat efektif digunakan untuk perawatan pada periode gigi bercampur karena pertumbuhan tulang masih aktif, sehingga selain dapat dilakukan pelebaran lengkung gigi juga
dapat terjadi pelebaran tulang basal. Pada pasien dewasa hanya terjadi pelebaran pada corona arch (leng-kung gigi) tanpa diikuti oleh pelebaran lengkung basal.

Untuk melakukan ekspansi pada pasien dewasa perlu diperhatikan beberapa hal antara lain:

Jika menurut perhitungan metode Pont didapatkan pertumbuhan lengkung gigi tidak mencapai normal (istilah umum: kontraksi).

a. Jika indeks Howes menunjukkan:
 - inter tonjol P₁ antara 36% - 43%
 - inter fossa canina antara 37% - 44%
 Jadi jarak interfossa lebih besar dari jarak intertonjol bukal P₁. Secara klinis atau pada model studi terlihat inklusi gigi P₁ condong ke palatinal (conver-gen).

b. Jika terdapat diharmoni rahang, yaitu dalam keadaan oklusi menunjukkan adanya penyempitan salah satu rahang dibandingkan dengan lengkung gigi antagonisnya.

3. Perawatan ortodontik dengan melebarkan lengkung gigi/rahang menggunakan alat ekspansi harus dilakukan over expansion untuk mengatasi relaps yang mungkin terjadi. Hal ini disebabkan tertariknya serabut-serabut periodontal yang sangat elastis sewaktu dilebarkan, serabut-serabut tersebut akan mengkerut kembali sehingga kemungkinan terjadinya relaps sangat besar.
VI. AKTIVATOR

❖ PENDAHULUAN

Menurut Andresen (1920), Aktivator adalah pesawat fungsional yang bersifat fisologis karena tidak menggunakan atau menghasilkan kekuatan-kekuatan mekanis tetapi melanjutkan kekuatan fungsional dari otot-otot di sekitar mulut ke tulang gigi-gigi dan alveolus, rahang dan persendian rahang.

Aktivator ada beberapa macam antara lain aktivator yang dibuat oleh Robin, Andresen, Harvold dan Vargervik. Aktivator Robin dan Andresen pada dasarnya mempunyai efek dan fungsi yang sama, mereka menekankan pada penutupan muskulus, Aktivator disebut juga pesawat dari Andresen dan Haupl atau pesawat dari Norwegia oleh karena ditemukan oleh Andresen dan Haupl dari Norwegia,. Karena rahang atas dan rahang bawah bersatu disebut juga monoblok.

❖ Sifat-sifat :

a. Fungsional fisiologis

Melanjutkan tekanan fungsional otot-otot lidah, bibir, muka, pengunyahan, yang memberi rangsangan secara pasif terhadap gigi dan alveolus, jaringan periodontal, dan persendian rahang.

b. Fungsional Orthopedik

Perubahan yang dihasilkan sebagian besar terjadi pada tulang rahang dan persendian. Perubahan disekitar gigi dan jaringan pendukung gigi terjadi secara masal.

c. Pasif

Tidak menghasilkan gaya secara aktif tetapi mengapung diantara gigi-gigi, yang secara pasif meneruskan tekanan otot-otot muka dan pengunyahan

Menurut Andresen dkk, dengan merubah kedudukan mandibula ke anterior, akan menimbulkan suatu refleks kontraksi otot-otot masseter, temporalis pterygoideus dan supra hyoideus. Rangsangan otot-otot pengunyahan tersebut dilanjutkan oleh
Aktivator ke gigi, jaringan pendukung gigi, rahang dan persendian rahang. Gerakan gigi dihasilkan oleh tarikan otot-otot pengunyah yang berusaha untuk mengembalikan mandibula ke kedudukan istirahat.

- **PERUBAHAN-PERUBAHAN YANG TERJADI PADA PEMAKAIAN AKTIVATOR**

1. **Perubahan dento alveolair**, dalam arah
 - Antero posterior
 Terjadi pergesean gigi-gigi posterior maupun anterior sehingga terjadi perubahan oklusi menjadi relasi klas I Angle, dari Klas II Angle atau Klas III Angle
 Gigi-gigi bergerak ke arah ruangan pada pelat yang sebelumnya telah dikurangi.
 - Vertikal atau ekstrusi pada gigi-gigi posterior karena pelat sebelah oklusal gigi-gigi posterior maksila dan mandibula telah dikurangi.
 - Lateral atau ekspansi
 Disini lengkung gigi bertambah lebar. Apabila penderita menggerakkan mandibula ke kiri, aktivator akan menekan dinding maksila kiri dan dinding lingual mandibula sebelah kanan, demikian juga sebaliknya hal ini berefek melebarkan tulang rahang.
 - Intrusi gigi-gigi anterior RB apabila gigi-gigi tidak protrusi yang berlebihan.

2. **Perubahan artikulasi rahang**
 Menurut Korkhaus (Tulley, 1972), terjadi perubahan condylus yaitu pada cartilago yang merupakan pusat pertumbuhan mandibula. Terjadi rangsangan pertumbuhan pada condylus dan menggerakkan mandibula secara bodily ke anterior
 Penambahan pertumbuhan condylus adalah karena antara gigi-gigi posterior maksila dan mandibula terdapat pelat Aktivator yang berjarak lebih besar dari jarak inter-oklusal.

INDIKASI

Graber (1969) mengatakan bahwa indikasi perawatan dengan Aktivator adalah:

1. Maloklusi Angle klas II divisi 1
2. Maloklusi Angle klas I dengan gejala seperti maloklusi Angle klas II divisi 1

Menurut Salzmann (1966), aktivator juga dapat digunakan untuk merawat maloklusi Angle klas II divisi 2 dan maloklusi Angle klas III.

Menurut Graber (1967) apabila perawatan maloklusi Angle klas II divisi 1 dilakukan tepat pada saat terdapat dorongan pertumbuhan akil balik, maka kemungkinan pencabutan gigi dapat dihindari.

Tulley (1972) mengatakan bahwa Aktivator paling baik untuk mengatasi maloklusi Angle klas II divisi 1 yang mempunyai panjang lengkung yang bagus, tidak terdapat gigi berjejal yang berat, terdapat spacing pada gigi-gigi incisivus atas dan gigi-gigi tersebut miring ke anterior.
Maloklusi klas II dengan open bite yang bukan karena kebiasaan menggigit bibir atau mendorong lidah ke anterior merupakan kontra indikasi pemakaian aktivator.

Menurut Jorgensen (1974), aktivator tidak efektif pada kasus maloklusi klas II divisi 1 dengan:

a. Gigi yang terputar
b. Kedudukan gigi anterior terlalu miring
c. Kelainan gigi individual yang berat
d. Kelainan unilateral

Indikasi untuk perawatan Aktivator maloklusi klas II divisi 1

Karacteristik skeletal yang ideal pada pasien adalah pola pertumbuhan yang baik dan normal atau mengurangi tinggi muka bawah, hubungan lengkung gigi dengan dasar apikal (apical base) yang sesuai, mutlak diperlukan. Ditinjau dari susunan gigi, Incisivus atau seharusnya protrusi dan Incisivus bawah retrusi atau pada posisi yang paling baik. Tidak ada crowding yang hebat, spacing atau rotasi. Perawatan yang rajin dari indikasi ini penting unguk meminimalkan jumlah kegagalan dan memaksimalkan keberhasilan.

Kerjasama pasien juga harus dipertimbangkan. Herren dan Demisch (1973) telah melaporkan bagaimana mereka mendekati agat didapat kerjasama pada periode observasi sebelum perawatan. Pasien yang ideal adalah pada pertengahan periode gigi bercampur, dengan lengkung yang baik dan relasi maxillomandibular yang abnormal.

Untuk anak perempuan, itu biasanya pada usia antara 7 dan 11 tahun; untuk anak laki-laki antara umur 8 dan 12 tahun. Jika semua gigi permanen (kecuali gigi molar 3) telah erupsi, angka keberhasilan adalah minimal, dengan koreksi yang dicapai oleh aktivator terbatas pada regio dentoveolar.
KONTRAINDIKASI

Kontra indikasi untuk perawatan aktivator pada maloklusi klas II divisi 1 dapat dibagi dalam faktor-faktor berikut:

- **Faktor skeletal**:
 - Kurangnya pertumbuhan
 - Pola pertumbuhan yang tidak baik (sudut mandibular plane tinggi, rotasi mandibula ke belakang, dll)
 - Tinggi muka bawah berlebihan
 - Ketidak seimbangan sagital yang berlebihan

- **Faktor dento skeletal**:
 - Ketidak seimbangan sagital
 - Ketidak seimbangan transversal

- **Faktor dental**:
 - Incisivus atas retrusi
 - Incibus bawah protrusi
 - Crowding yang hebat
 - Spacing yang parah
 - Rotasi yang parah
 - Bila diperlukan extrusi atau intrusi yang aktif

Kontra indikasi ini menghubungkan perawatan Aktivator keseluruhan tanpa memasukkan alat-alat lain. Setiap kali Aktivator digunakan untuk sebagian atau persiapan perawatan sebelum mencapai tujuan tertentu, satu atau lebih kontra indikasi dapat diabaikan.

KEUNTUNGAN-KEUNTUNGAN PEMAKAIAN AKTIVATOR

1. Tidak ada kerusakan jaringan alat pengunyahan
2. Tidak ada tekanan pertumbuhan normal dari arkus dentalis dan rahang dan tidak ada hambatan pembetulan posisi suatu anomali
3. Tidak tergantung pada periode pertumbuhan gigi geligi.
4. Mudah dibersihkan
5. Dipakai pada malam hari dan siang hari pada waktu dirumah.
6. Pesawat kuat tidak mudah pecah.

❖ KERUGIAN-KERUGIAN PEMAKAIAN AKTIVATOR
1. Untuk pasien yang tidak kooperatif, perawatan tidak berhasil.
2. Hanya dapat digunakan pada kasus-kasus tertentu.
 Contoh: pada kasus gigi berjejal berat tidak dapat digunakan.

Pada pemakaian aktivator untuk klas II divisi 1 terjadi efek biologis sebagai berikut:
1. Remodeling pada condylus mandibula
2. Merubah arah atau menghambat pertumbuhan maxilla ke arah horisontal
3. Rotasi ke arah depan – bawah pada maxilla
4. Rotasi madibula
5. Perubahan lengkung gigi ke arah anteroposterior
6. Perubahan erupsi gigi pada segmen bukal
7. Tipping gigi anterior bawah/incisivus

1. Remodeling pada condylus mandibula
 Stokli and Willert (1971) menyatakan bahwa perubahan fungsional mandibula ke arah anterior disertai dengan perubahan histologis pada regio condylus, pada reshus kera. Mereka mengamati perubahan adaptasi jaringan
pada 3 lapisan yang berasal dari kartilago condylus, juga Joho, Moyers dan Mc. Namara (1972) telah melaporkan perubahan yang serupa dengan pengamatan chepalometrik.

2. **Merubah arah atau menghambat pertumbuhan maxilla ke arah horisontal**

Harvold dkk (1971) menyatakan bahwa daerah basal dari maxilla perkembangan normalnya ke arah anterior dihambat. Sebaliknya menurut Bjork (1951) reaksi tersebut hanya terjadi pada gigi-gigi dan tulang alveolus tanpa adanya efek terhadap pertumbuhan tulang facial. Efek pemakaian aktivator terhadap pertumbuhan maxilla dapat diubah secara efisien dengan mengombinasi perawatan aktivator dan headgear (Pfeifer, Grobety, dan Dietrich, 1972). Bagaimanapun, hal ini meragukan, sejauh mana efek observasi pada pertumbuhan sutura tersusun atas:

a. Penggurangan aktivasi seluler
b. Kemunduran dalam pertumbuhan dan/atau perubahan arah pertumbuhan ke arah vertikal yang berlebihan
c. Kombinasi dari (a) dan (b)

Pemeriksaan lebih lanjut pada biomechanical autoradiographic dan tingkat mikroskopi elektron diperlukan untuk memperjelas reaksi klinisnya.

3. **Rotasi ke arah depan – bawah maxilla**

Demisch dkk (1973) telah menunjukkan bahwa tidak hanya terjadi suatu pengurangan dalam arah perubahan maxilla, tetapi juga rotasi ke arah depan – bawah dari maxilla. Penjelasan pada penemuan ini berdasar pada aksi kekuatan vektor melawan lengkung gigi yang baik pada maxilla dan membawa ke pusat resistensi maxilla.

4. **Rotasi Mandibula**

Harvold dan Vargervik (1971) telah mengamati penambahan tinggi processus alveolaris mandibula dengan berbagai derajat perubahan dan
tingkat erupsi gigi pada segmen bukal. Hasil rotasi ke arah belakang mungkin
dikompensasi dengan pertumbuhan ke arah vertikal dari condylus pada umur
selanjutnya. Hal ini bergantung pada sumbu putar mandibula atau erupsi gigi
mandibula yang berlebihan pada bagian bukal yang akhirnya menentukan
penurunan/pengurangan derajat over bite. Namun persendian mandibula
adalah merugikan dalam maloklusi klas II dengan sudut bidang mandibula
yang tinggi.

5. Perubahan lengkung gigi ke arah anteroposterior

Banyak pendapat yang berbeda mengenai perluasan perubahan lengkung
gigi atau perpindahan ke distal pada gigi maxilla dan perpindahan ke mesial
dari gigi-gigi mandibula yang telah dapat dirangsang oleh sebuah aktuator.
Bjork (1951) setuju dengan semua perubahan dari bagian anteroposterior.
Menurut Andresen dan Haupl (1935), serta Korkhaus (1960) perpindahan ke
distal gigi-gigi posterior/molar pada maxilla dan perpindahan ke mesial pada
gigi-gigi posterior mandibula terjadi, namun telah banyak digunakan incline
plane kecil pada aktuator untuk pertumbuhan langsung pada gigi. Harvold
dan Vargvik (1971) dengan memodifikasi alat Andresen yang mana hanya
gigi posterior atas yang ditutup akrilik, keduanya tidak menyebabkan
penambahan gerakan ke distal dari gigi maxilla dan gerakan ke mesial pada
gigi mandibula. Hal ini sesuai dengan pendapat Meach (1966) bahwa pola
pertumbuhan gigi-gigi molar tidak berubah pada perawatan dengan aktuator.

6. Perubahan erupsi gigi pada segmen bukal

Harvold dan Vargvik (1971) berpendapat bahwa dengan perubahan
akrilik secara selektif atau menggunakan desain yang diusulkannya, erupsi
gigi posterior maxilla dapat dihambat dan erupsi gigi antagonisnya
ditempatkan pada tempat yang tidak menggangu dan bebas dari kontak
oklusi. Perbedaan erupsi vertikal merupakan sumber yang penting dalam
perubahan maloklusi klas II menjadi oklusi normal, tetapi hal itu selalu
diikuti pertambahan tinggi muka bawah.
7. **Tipping gigi anterior bawah/Incisivus**

Preiffer dan Grobety (1972) telah menunjukkan bahwa efek protrusif dapat dihindari dan kemungkinan sebaliknya terjadi retrusi yang bersamaan dengan pemakaian aktivator dan headgear.

Perubahan gigi, lengkung gigi, erupsi dan tipping Incisivus terjadi lebih cepat sedangkan perubahan skeletal yaitu: remodelling condylus dan pertumbuhan maxilla mengalami hambatan, umumnya akan terjadi kemudian. Oleh karena itu rata-rata perawatan aktivator darimalokusi klas II divisi 1 terdiri dari:

- Tahap pertama dimana perubahan gigi lebih diutamakan
- Tahap kedua dapat diamati suatu pertambahan pada SNB dan pengurangan pada SNA
- Tahap skeletal efeknya menstabilkan hasil koreksi
Efek biologi tersebut harus dipertimbangkan pada indikasi dan kontraindikasi selama perawatan. Selanjutnya harus dipertimbangkan secara terpisah antara komponen gigi dan skeletal.

❖ BAGIAN-BAGIAN AKTIVATOR :

a. Plat dasar
b. Plat oklusal
 Pada RA menutupi permukaan oklusal gigi-gigi posterior sebatas fissura dan incisal gigi-gigi anterior.
 Pada RB menutupi seluruh permukaan oklusal gigi-gigi posterior dan incisal gigi-gigi anterior.
c. Guide wire
 Lengkung Labial pada Aktivator disebut juga Guide Wire ada 3 macam:
 1) Maxillary Guide Wire
 2) Mandibulary Guide Wire
 3) Intermaxillary Guide Wire
 Pemakaian macam Guide Wire tergantung dari tujuan perawatan, misalnya

❖ LAMA PEMAKAIAN AKTIVATOR :

Menurut Schwartz dan Groutzinger (1966), pemakaian aktivator pada maloklusi klas II divisi 1 adalah 2 – 2½ tahun, dipakai terus menerus pada malam hari (minimal 7 jam/hari) dan dilanjutkan pemakaian retainer aktivator selama 1 tahun.
JARAK WAKTU PENGONTROLAN

Menurut Salzmann (1966) sesudah alat tepat dipakai maka waktu pengontrolan minimal setiap 2 bulan sekali. Pada waktu pengontrolan dilakukan tindakan penyesuaian alat terhadap gigi dan jaringan pendukungnya.

Hal-hal yang perlu dilakukan pada waktu kontrol atau penyesuaian alat:

1. Pengurangan pelat oklusal dan distal gigi-gigi posterior maksila sehingga memungkinkan gigi-gigi posterior maksila bergerak ke arah oklusal, distal dan buccal.
2. Pengurangan pelat sebelah oklusal dan mesial gigi-gigi posterior mandibula sehingga memungkinkan gigi-gigi posterior mandibula bergerak ke arah oklusal, mesial dan buccal.
3. Pengurangan pelat dasar di sebelah palatinal gigi-gigi incisivus maksila, tetapi tidak boleh lepas dari tepi incisal gigi incisivus mandibula.
 Bila diperlukan, guide wire maksila dapat diaktifkan untuk meretraksi gigi-gigi anterior RA.

PENYESUAIAN ATAU PENGURANGAN PELAT AKRILIK AKTIVATOR PADA WAKTU KONTROL:

Tujuan dari penyesuaian atau pengurangan plat Aktivator adalah untuk membentuk dataran penuntun/Guading plane/dataran penunjuk. Dataran penunjuk adalah dataran yang terdapat pada Aktivator, berfungsi menuntun keahar mana gigi-gigi akan digerakkan, sesuai dengan tujuan perawatan. Aktivator dapat menggerakkan gigi secara serentak dalam 3 dimensi, vertikal, transversal dan sagital.

PENGURANGAN UNTUK MALOKLUSI ANKLE KLAS II DEVISI 1:

1. **VERTIKAL**

Tujuan:
Koreksi klas II divisi 1 dengan gigitan dalam (deep over bite), karena supraoklusi gigi-gigi anterior bawah atau infraoklusi gigi-gigi posterior atau kombinasi keduanya.

Cara kerja:

a. Infra oklusi gigi posterior : permukaan okclusal posterior Rahang atas dan Rahang bawah dikurangi sehingga gigi-gigi posterior berelevasi.

\[\text{Gambar 1: Bentuk pengasahan untuk ekstrusi molar}\]

c. Kombinasi dari keduanya.
2. TRANSVERSAL

Tujuan:
Tujuan berbeda-beda sehingga dapat dilakukan secara selektif

CONTOH:
a.1. Molar atas dan bawah ekstrusi
 Pengurangan pada dataran oklusal baik rahang atas maupun rahang bawah.
a.2. Molar atas ekstrusi dan ekspansi
 Pengurangan pada daerah oklusal rahang atas dengan dataran miring ke bukal

Gambar 3 : Penutupan akrilik untuk intrusi insisivus (Graber, T.M., Rakosi, Th., dan Petrovic, A.G. 1985, 189)

Gambar 4 : Pengasahan selektif. Kiri, molar atas dan bawah ekstrusi; kanan, hanya molar atas ekstrusi. (Graber, T.M., Rakosi, Th., dan Petrovic, A.G. 1985, 190)
b. Perawatan gigitan terbalik posterior pada satu sisi rahang.

Gambar 5: Efektivitas aktivor dalam arah transversal pada kasus gigitan terbalik (Graber, T.M., Rakosi, Th., dan Petrovic, A. G., 1985, 205)

c. Penjangkaran Pesawat satu sisi dan menggerakkan gigi-gigi pada sisi berlawanan dengan pegas atau penambahan akrilik

Gambar 6: Dengan penjangkaran pesawat pada satu sisi dan menggerakkan gigi-gigi pada sisi yang berlawanan dengan pasak (pegs), pegas, atau penambahan akrilik lunak (Graber, T.m., Rakosi, Th. dan Petrovic, A.G., 1985, 205)
3. SAGITAL

Pengurangan arah sagital pada Klas II divisi 1 agar didapatkan hubungan Klas I adalah sebagai berikut: gigi-gigi posterior rahang bawah digerakkan ke mesial/anterior secara bersamaan, maka permukaan mesiolingual harus dibebaskan dari akrilik atau akrilik dikurangi pada daerah tersebut. Sebaliknya gigi-gigi posterior rahang atas harus ke distal, maka akrilik pada daerah distolingual gigi-gigi posterior rahang atas perlu dikurangi. Sehingga didapatkan pergerakan gigi-gigi secara masal sesuai dengan tujuan perawatan.

Gambar 7: Pengasahan untuk menggerakkkan gigi-gigi posterior atas ke distal dan gigi-gigi posterior bawah ke mesial pada Klas II Angle divisi 1 (Graber, T.M., Rakosi, Th., dan Petrovic, A.G., 1985, 207)

❖ PENGURANGAN PADA MALOKUSI ANGLE KLAS III

Untuk melihat kemajuan perawatan akibat pemakaian Aktivator, dapat diukur:

- Jarak inter fossa canina, inter P₁, inter M₁ maksila
- Over bite
- Over jet
• Relasi gigi-gigi posterior arah antero posterior dengan menentukan hubungan antara titik puncak tonjol mesio buccal M1 maksila dengan cekungan mesio buccal molar 1 tetap mandibula, pada saat oklusi sentrik.

❖ PROSEDUR PEMBUATAN AKTIVATOR
1. Pembuatan Gigitan kerja
2. Fiksasi articulator untuk pembuatan Aktivator khusus yaitu Tripoid.
3. Pembuatan Guide Wire
4. Pembuatan model malam
 a. Plat dasar Rahang Atas
 b. Plat dasar Rahang Bawah
 c. Tanam Guide Wire
 d. Plat dasar Rahang Atas dan Rahang Bawah disatukan.
5. Try-in
6. Inbed dalam cuvet
7. Pengisian Akrilik
8. Insersi

❖ PEMBUATAN WORKING BITE
Dibuat dari malam model yang dibentuk tapal kuda, tebal \(+4 - 6 \) mm
Pada waktu mengigit :

• Median line RA dan RB segaris kecuali telah terjadi pergeseran median line karena pergeseran atau migrasi dari gigi –giginya.
• Relasi antero posterior RA dan RB, idealnya dibuat normal (klas I Angle), over jet 2 mm.

Pada kasus klas II yang berat misal over jet 13 mm, tidak langsung dijadikan Maloklusi Angle Klas I tapi dimajukan secara bertahap yaitu dibuat maksimal optimum missal overjet 6 mm dahulu. Setelah terjadi perubahan pada overjet baru, dilakukan pembuatan Aktivator baru dengan pembuatan gigitan kerja terlebih dahulu sampai terjadi
Maloklusi Angle Klas I atau normal oklusi. Bila langsung dimajukan 11 mm dikhawatirkan cepat capai atau sakit pada TMJ.
Pembuatan model malam, fiksasi pada artikulator, try in, inbed dalam kuvet™ baca sendiri

❖ **PENANAMAN MODEL KERJA PADA OKLUDATOR**

![Gambar 8: Model kerja dipasang dalam okludator dilihat dari atas dengan posisi 90° (A) atau posisi 180° (B)]

❖ **PEMBUATAN KAWAT**
Setelah penanaman dalam okludator, pembuatan kawat dapat dimulai. Kawat atau klamer yang dimaksud adalah lengkung labial dan elemen-elemen tambahan lain bila diperlukan.

Pembuatan lengkung labial atau Guide Wire

Untuk memudahkan pembuatannya pada waktu membuat lengkung labial, model kerja dilepaskan dari okludator terlebih dahulu tanpa mengubah posisi penahan tinggi gigitan kerja yang sudah ditentukan.

Lengkung labial tipe Hawley dibuat dengan penampang 0,7 mm. Ascher (1968) menggunakan penampang lengkung labial 0,8 mm. Tulley dan Campbell (1970) menyebutkan bahwa penampang 0,9 milimeter yang tidak diaktifkan digunakan pada insisivus atas dengan posisi ke labial. Lengkung labial tersebut hanya menyentuh sisi labial insisivus atas pada sepertiga jarak insisal-servikal, dan daerah palatalnya dibebaskan dari akrilik. Dickson dan Wheatly (1978) menggunakan lengkung labial untuk aktuator 0,8 mm. Dengan demikian penampang lengkung labial pada aktuator bervariasi diantara 0,7 – 0,9 mm.

Posisi lengkung labial juga ditentukan oleh gigitannya, gigitan dalam atau gigitan terbuka. Hal ini akan menentukan posisi horisontal lengkung labial, di atas atau di bawah konveksitas terbesar (Graber, Rakosi, dan Petrovic 1985).
Lengkung labial pada aktivator untuk Klas II dibuat di rahang atas dan Klas III di rahang bawah. Dapat juga dibuat di rahang atas dan bawah, tergantung pada anomalinya.

Lengkung labial pada sepertiga insisal digunakan untuk intrusi dan sepertiga servikal untuk ekstrusi.

Sesudah posisi lengkung labial benar, kemudian difiksasi dengan malam disebelah labial dan bukal.

Pembuatan elemen-elemen tambahan

Elemen tambahan yang dimaksud disini adalah aktivator yang sudah dimodifikasi, antara lain dengan sekrup ekspansi di tengah di antara rahang atas dan bawah menurut Ascher (1968).

PEMBUATAN MODEL MALAM

Dibuat model malam pelat dasar Rahang Atas, pelat dasar Rahang Bawah Rahang bawah, Guide wire atau elemen tambahan dipsang, kemudian model
malam pelat dasar Rahang atas dan Rahan Bawah disatukan dengan membuat pelat oklusal.

❖ TRAY-IN

Model malam Aktivator di cobakan pada pasien, dengan tujuan mudah diperbaiki apabila terdapat kesalahan-kesalahan yang dilakukan sebelumnya. Setelah model malam Aktivator pas/ tepat pada mulut pasien ditanam dalam Articulator Tripoid atau Okludator.

❖ INBED DALAM CUVET

Penanaman pada cuvet bagian lingual menghadap keatas.

1. Chin cup digunakan untuk merawat kasus maloklusi klas III Angle, dimana mandibula prognati

Menurut Proffit (1986), pasien yang ideal untuk dirawat dengan chin cup adalah :
- Pasien dengan masalah skeletal yang ringan dimana incisivus dapat dibawa ke kedudukan end to end.
- Ketinggian muka vertikal pendek
- Posisi incisivus bawah normal atau protrusif, tetapi tidak retrusif.

2. Arah gayanya dari gnathion ke sella turcica atau dari gnathion ke condylus.

3. Besarnya kekuatan yang dikenakan

Sugawara dkk (1990), menggunakan gaya sebesar 250 – 300 gr / sisi

4. Cara mengukur dengan menggunakan dontrix

5. Lama pemakaian chin cup bervariasi, sampai tujuan kita tercapai atau sampai pasien tidak mau memakainnya lagi karena sudah dewasa.
Sugawara dkk (1990) pada percobaannya, rata-rata pasien menggunakan chin cup selama 4½ tahun (2 – 8 tahun).

Dalam 1 hari minimal dipakai selama 14 jam

6. Chin cup digunakan pada penderita pada masa pertumbuhan (sebelum pertumbuhan selesai) \(\text{TM} \pm \) umur 5 – 13 tahun.

 Graber (1977) pada percobaannya menggunakan penderita yang berumur 5 – 8 tahun (rata-rata 6 tahun) dengan lama perawatan 3 tahun.

7. Hasil/akibat pemakaian chin cup
 a. Merubah arah pertumbuhan mandibula
 b. Reposisi ke belakang dari mandibula (back word repositioning)
 c. Penghambatan pertumbuhan madibula
 d. Merubah bentuk (remodeling) mandibula

Menurut Slazmann (1966), penggunaan chin cup bermaksud menghambat pertumbuhan mandibula ke depan, pada saat yang sama maksilä tidak dirintangi untuk melanjutkan pertumbuhannya ke depan.

8. Bentuk atau gambar alat chin cap (chin cup)
VII. PEMERIKSAAN ORTODONSI

❖ PENDAHULUAN

Sebelum melakukan perawatan ortodontik perlu langkah-langkah untuk menghindari hal-hal yang tidak diinginkan. Diharapkan langkah-langkah yang ditempuh dapat membantu mendapatkan hasil yang optimal. Dengan langkah awal yang baik akan didapat motivasi yang baik dari pasien, keluarga pasien dan operator yang baik pula. Adanya saling pengertian dan kerjasama diantara mereka akan mempermudah perawatan.

Untuk itu disusun prosedur perawatan yang meliputi :
1. Penerangan terhadap pasien dan keluarganya tentang jalannya perawatan
2. Identifikasi pasien
3. Pemeriksaan terhadap penderita
4. Penentuan diagnosa
5. Analisis etiologi
6. Rencana perawatan
7. Penentuan alat
8. Penentuan prognosa perawatan

1. Penerangan terhadap pasien dan keluarganya tentang jalannya perawatan
 Meliputi :
 a. Prosedur perawatan tentang lamanya waktu yang relatif lama
 b. Ketaatan pasien terhadap peraturan-peraturan yang ditetapkan operator
 c. Jenis alat yang digunakan
 d. Kemungkinan tindakan yang dilakukan operator terhadap pasien, misalnya pembedahan, pencabutan, grinding slicing
 e. Tindakan yang dilakukan untuk mengumpulkan data
 f. Biaya
 g. Gambaran perkiraan hasil yang akan dicapai bila perawatan selesai atau berhenti di tengah jalan
2. Identifikasi pasien

Penting untuk kepentingan administrasi bila suatu saat diperlukan. Untuk keadaan normalnya sebagai petunjuk pada sasaran yang akan dicapai.

Dalam mengindentifikasi perlu diketahui:

a. Tempat merawat
b. Tanggal mulainya perawatan
c. Nomor kartu
d. Nama
e. Umur
f. Jenis kelamin
g. Nomor model
h. Suku bangsa
i. Pekerjaan
j. Agama
k. Alamat
l. Nama orang tua
m. Pekerjaan orang tua
n. Alamat orang tua
o. Operator

3. Pemeriksaan terhadap penderita

Meliputi:

1. Pemeriksaan subyektif
2. Pemeriksaan obyektif

Pemeriksaan subyektif dilakukan dengan anamnese:

a. Keluhan utama
b. Keluhan sekunder
c. Riwayat gigi yang meliputi:
 - Anamnese sebelum lahir
 - Anamnese sesudah lahir
Meliputi : gigi decidui erupsinya normal atau tidak
: kapan mulainya erupsi
: ada tidaknya karies
: waktu tanggalnya tepat atau tidak
: ada tidaknya gangguan
: pernah dirawat atau belum
: bagaimana susunannya

: riwayat gigi bercampur :
 - kapan
 - ada tidaknya persistensi
 - ada tidaknya malposisi
 - pernah atau belum dirawat
 - ada tidaknya prolong retensi

: riwayat gigi permanen :
 - ada tidaknya pencabutan gigi
 - ada tidaknya tambalan
 - karies

: kapan timbulnya kelainan

: jumlah gigi lengkap atau tidak

d. Riwayat penyakit yang diderita

Penyakit yang berhubungan dengan pertumbuhan dan perkembangan :

- kapan
- intensitas

Penyakit spesifik yang ada disekitar rongga mulut dan penyakit-penyakit lain
(malnutrisi, hepatitis, tipus dan lain-lain)
e. Riwayat keluarga

- Perlu dijelaskan bagaimana susunan gigi anggota keluarga
- Apakah ada yang pernah dirawat orto
- Bila ada alat apa yang dipakai
Dari sini dapat ditarik kesimpulan apakah kelainan tersebut herediter atau bukan.

Misal:

- Kebiasaan yang tidak baik
 Jika ada perlu diketahui: jenisnya
 : kapan dimulai
 : intensitas
 : cara melakukannya

- Trauma
 Pernah mengalami atau tidak
 Jika pernah tanyakan: kapan terjadinya
 : di regio mana
 : bagaimana arah trauma tersebut

Pemeriksaan obyektif dilakukan dengan empat cara pemeriksaan:

a. Pemeriksaan klinis, baik umum maupun lokal
b. Pemeriksaan laboratoris
c. Pemeriksaan percobaan
d. Pemeriksaan perhitungan

Keterangan:

a. Pemeriksaan Klinis
 General meliputi:
 • Tinggi badan
 • Berat badan
 • Jasmani
 • Rohani

 Lokal meliputi:
 • Extraoral
 • Intraoral
EXTRA ORAL

- Bentuk kepala: brachicephalic / mesocephalic / delicnocephalic

Bentuk kepala

Klasifikasi indeks kepala menurut Sukadana (1976):

a. Dolicocephali 70,0 – 74,9
b. Mesocephali 75,0 – 79,9
c. Brachicephali 80,0 – 84,9

Pengelompokan bentuk kepala berdasarkan indeks kepala dengan jalan pengukuran lebar kepala dan panjang kepala (Martin, 1954 cit. Salzmann, 1966; Olivier, 1971; Sukadana, 1976), dengan rumus:

\[
\text{Indeks kepala} = \frac{\text{Jarak kepala maksimum}}{\text{Panjang kepala maksimum}} \times 100
\]

Panjang kepala adalah diameter terbesar dari glabellaophistthocranium (Gb 1 A). Lebar kepala adalah ukuran transversal paling besar pada bidang horisontal di atas puncak supramastoid dan zygomatik (Gb. 1B).

Gambar 1. A. panjang kepala (jarak grabella-occipital), B. lebar kepala (ukuran transversal paling besar pada bidang horisontal di atas puncak supramastoid dan zygomatik) (Salzmann, 1966)
Untuk mengetahuinya dipakai index kepala

Lebar kepala max

\[\text{IK} = \frac{\text{Panjang kepala max}}{\text{Lebar kepala max}} \times 100 \]

Bila IK = 70 – 74,9 \(\Leftarrow \) delichocephalic

75 – 79,9 \(\Leftarrow \) mesocephalic

80 – 84,9 \(\Leftarrow \) brachisephalic

- Bentuk muka : eury meso lepstoprosop

Jarak nation ke gnation

\[\text{Indeks muka} = \frac{\text{Jarak nation ke gnation}}{\text{Lebar bizygomatik}} \times 100 \]

Bila IM = kurang dari 74,9 \(\Leftarrow \) hypereuryprosop

80 – 84, \(\Leftarrow \) euryprosop

85 – 89,9 \(\Leftarrow \) mesoprosop

90 – 94,9 \(\Leftarrow \) leptoprosop

\(\geq \) 95 \(\Leftarrow \) hyperleptoprosop

- Keadaan muka : simetri / asimetri

- Profil : cembung / cekung / lurus
Bentuk muka:
1. Hypercuryprosope : – 79,9
2. Euryprosope : 80 – 84,9
3. Mesoprosope : 85 – 89,9
4. Leptoprosope : 90 – 94,9
5. Hyper leptoprosope : 95 -

Jarak Nation ke Gnation

Indeks muka = \[
\frac{\text{N - Gn}}{\text{Lebar bizygomatik}} \times 100
\]

Keadaan muka:
- simetri
- Asimetri

Profil : facial couvexity tergantung
≈ Kedudukan :
- Maxilla terhadap Cranium
- Mandibula terhadap Maxilla

≈ Posisi rahang :
- Maxilla : normal atau retrusif atau protrusif
- Mandibula : normal atau retrusif atau protrusif

≈ Garis Simon : normal atau retrusif atau protrusif

≈ Otot-otot pengunyahan
- Tonus : normal atau hypotonus atau hypertonus
- Fungsi : normal atau paralise
- Keadaan : simetris atau asimetris

≈ Bibir
- Keadaan : normal atau schisis
- Ketebalan : tebal atau tipis
- Posisi saat istirahat : membuka atau menutup
- Letak stonium saat restorasi
 Normal = 2,5 mm di atas incisivus atas

≈ Pipi : cekung atau menggelembung

≈ Gerakan mandibula saat menutup dan membuka : ada latero defiasi atau tidak

INTRA ORAL
≈ Jaringan lunak
≈ Lidah :
- Besar kecil
- Panjang pendek
- Tonus
- Keadaan kesehatan

≈ Ginggiva : ada tidaknya pigmentasi
≈ Palatum :
• Normal atau tidak
• Tonus
• Bercelah atau tidak
≈ Glandula tonsila palatina :
• Normal atau tidak
• Ada atau tidak inflamasi
• Hypertropi atau tidak
≈ Frenulum labii superior dan inferior : perlekatannya
Kalau ada perluasaan fren. labii sup. dilakukan Blanche test
Caranya : tarik bibir ke atas sehingga frenulum tertarik, maka gusi tampak pucat.
Jarak normal frenulum ke gingiva = 3 – 5 mm
≈ Oral higiene :
• Baik, cukup, sedang, jelek
• Calculus di regio mana
• Debris di regio mana

≈ Jaringan keras
• Pemeriksaan gigi geligi
 Adakah karies, tumpatan, agenese, supernumery, trauma.
• Lengkung gigi : simetri atau asimetri
• Hubungan rahang : orthognatik atau retrognatik atau prognatik
• Anomali individual : labioversi, buccoversi, palatoversi,
 mesioversi, linguoversi, rotasi, rudimenter dan lain-lain.
• Adakah : spacing, crowding, protrusi, retrusi, kombinasi
Supernumery paling banyak mesiodens 1/1
 ♦ Paradonsia antara P₁ dan P₂
Missing teeth paling banyak pada I₂ C P₂ P₂ M
Transposed teeth pada 1 3 2 4 5
 1 2 4 3 5
Relasi rahang atas – rahang bawah
Dapat dilihat pada keadaan centrik occlusi
Dilihat median lininya normal atau bergeser
Relasi posterior = relasi M₁ dengan M₁
Kanan kiri bisa class I, II, III

Bila M hilang bisa dilihat relasi anteriornya yaitu antara C dengan C
Pada anterior diukur overbite dan overjet serta edge to edgenya normal, kecil atau besar
Pada pemeriksaan lateral mungkin terjadi cross bite.
Cross bite yang normal arahnya ke lingual atau buccal.

b. Pemeriksaan laboratoris
Study model
Gambaran rahang atas dan rahang bawah
Ukuran M₁ – M₁
Ukuran tulang orbital, interpremolar, intermolar, interfossa, canina, panjang dan lebar lengkung
Dilakukan pengukuran-pengukuran :
- Mesio distal gigi dibanding dengan ukuran normal
- Mengukur jarak antara premolar satu kiri atas dengan premolar satu kanan atas
 Dilakukan antara titik pada tepi paling distal dari cekung mesial pada permukaan oklusal premolar satu kiri atas ke cekung mesial pada premolar satu kanan atas
- Jarak antara molar satu kiri atas dengan molar satu kanan atas.
 Pengukuran dilakukan pada titik cekung mesial permukaan oklusal molar satu kiri atas dan molar satu kanan atas
- Buat bidang orbital
 Perhatikan letaknya terhadap caninus dengan mengingat hukum caninus.
Ro-foto

- Mengetahui resorbsi akar gigi decidui
- Mengetahui letak gigi pengganti
- Mengetahui besar dan letak gigi permanen
- Mengetahui pertumbuhan gigi
- Mengetahui keadaan jaringan sekitarnya

Pemeriksaan foto

Foto diambil dari depan dan dari samping. Untuk mengetahui keadaan sesudah dan sebelum perawatan.

Diperlukan juga teleradiografi:

- Teleradiografi kepala dari samping dan vertikal
 - Terlihat ada tidaknya benih gigi permanen
 - Terlihat perbandingan lebar benih gigi permanen 3, 4, 5 dengan gigi I, II, III
 - Dapat dicari sudut α yaitu sudut mesial yang dibentuk oleh as gigi molar satu atas dengan oklusal
 Normal $\alpha = 90^\circ$
 - Dapat dicari sudut β yaitu sudut mesial yang dibentuk oleh garis oklusal dengan molar satu bawah
 Normal $\beta = 100^\circ$
 - Dicari sudut yaitu sudut yang dibentuk oleh molar satu atas dan molar dua bawah
 Normal = 170°

- Teleradiografi dari pergelangan tangan (ossesamoidea). Untuk mengetahui pertumbuhan tulang sesamoidea untuk dibandingkan sesuai tidak dengan umur gigi geligi.

c. Pemeriksaan hasil percobaan

Percobaan Blanche Test

Dilakukan bila terjadi central diastema
Gunanya untuk mengetahui apakah diastema tersebut disebabkan oleh kelainan frenulum labialis superior atau bukan
Caranya :
Bibir ditarik ke atas kemudian dilihat kepuatan akibat tarikan tersebut. Jika daerah kepuatan terlihat sampai menyeberang ke palatum berarti diastema tersebut disebabkan oleh kelainan frenulum.

≈ Control reflek otot ala nasi (ala musculator)
Untuk mengetahui apakah pasien bernafas melalui mulut atau tidak
Caranya:

≈ Percobaan cotton butterfly
Fungsinya sama dengan control reflek ala nasi
Caranya:
Ambil kapas tipis dan dibentuk seperti kupu-kupu.
Lalu tempelkan pada bibir atas di daerah philrnum.
Amati pergerakan kapas saat pasien bernafas.
Apakah gerakan kedua sayap, satu sayap atau keduanya tak bergerak.
Dari sini dapat diketahui apakah pasien bernafas normal, dengan salah satu lubang hidung atau bernafas lewat mulut.

≈ Metode Thomson dan Brodie
Jika pasiennya deep over bite
Caranya:
Pasien duduk dengan kepala tegak memandang lurus ke depan dan bidang frankfurt horisontal sejajar lantai.
Tentukan titik Spina Nasalis Anterior (NSA), tandai.
Tentukan titik Nation (Na), tandai.
Tentukan titik Gniation (Gn), tandai.
Dengan slinding ukurlah jarak SNA ke Na
Catatan: menurut Strang dalam keadaan rest position
Jarak Na ke SNA = 43 % x jarak Na ke Gn
Na – SNA = \(\frac{43}{100} \times Na – Gn \)

Dengan rumus tersebut SNA sampai Gn dapat dihitung.
Misal: Na – SNA = 43, maka SNA – Gn = 57 sebab menurut rumus diatas Na – Gn = 100.

Gambar 3: Metode Thomson dan Brodie

Modelling sompoun atau stenz dilunakkan dengan air panas. Setelah lunak letakan di bagian okclusal gigi posterior bawah kanan dan kiri. Pasien disuruh menggigit stenz tersebut dalam okclusal position sampai diperoleh jarak Na – Gn (sesuai) = hasil perhitungan.
Setelah stenz keras kita ambil dan kita pasang pada wax model kerja kemudian dipasang pada artikulator.
Dari percobaan tersebut ada 3 kemungkinan:
1. Jika over bite masih berlebihan sedang stenz bagian posterior hampir habis tergigit maka deep over bite tersebut karena supra oklusi gigi depan (belakang normal).
2. Jika over bite normal dan stenz bagian posterior tebal maka deep over bite tersebut karena infra oklusi gigi posterior (anterior normal).
3. Jika over bite masih berlebihan sedang stenz bagian posterior tebal maka deep over bite tersebut karena kombinasi supra oklusi gigi anterior dan infra oklusi gigi posterior.

Gambar 4 : Posterior normal, Anterior Supra
Gambar 5: Posterior Infraoklusi, Anterior normal

Gambar 6: Anterior Supraoklusi, Posterior Infraoklusi

Pemeriksaan pelengkap
Meliputi :
1. Teleradiografi profil
2. Pemeriksaan terhadap radiografi tulang pergelangan tangan = HAND RIFE RADIOGRAFT

Teleradiografi :
Meliputi :
1. Bidang Frankfort
2. Garis mandibula
3. Dari Downs mengenai ANB
4. Balard mengenai :
 1 = 107° (sudut yang dibentuk oleh F sumbu I dengan bidang Frankfort)
 I = 90° (sudut yang dibentuk oleh sumbu I bawah m dengan garis mandibula)
5. Titik C (titik Cautang) yaitu titik potong dari dua garis yang tegak lurus pada garis mandibula dan garis bispinal dan tangens pada cekung contour depan maxilla dan mandibula.
 Titik C = 1 – 4 mm diatas bisektris depan sudut yang dibentuk oleh garis mandibula dengan garis bispinal.
6. Mencari \(\alpha = \) sudut mesial yang dibentuk oleh as gigi 6 dengan garis oklusal.
 Normal \(\alpha = 90° \)
7. Mencari \(\beta = \) sudut mesial yang dibentuk oleh garis oklusal dengan as gigi 6
 Normal \(\beta = 100° \)
 Mencari = sudut yang dibentuk oleh molar
 Normal = 170°
8. Ada tidaknya benih gigi permanen
9. Perbandingan lebar benih P dengan m yaitu \(C _ P1 _ P2 \)
 IV V IV
Resing Teleradiografi menurut Bouvet :

6 = 0,5 mm

6 = 1 mm di dalam limit intern dari bayangan corpus mandibula

Pemeriksaan terhadap radiografi tulang pergelangan tangan HAND RIFE RADIOGRAFT

Pertumbuhan tulang pergelangan tangan laki-laki berbeda dengan wanita. Pemeriksaan ini penting untuk mengetahui pertumbuhan tulang sesuai atau tidak dengan pertumbuhan geligi. Hasil pemeriksaan disusun secara sitematis sebagai berikut :

1. Anamnesis dan riwayat kasus
2. Pemeriksaan klinis, meliputi :
 a. Pemeriksaan general :
 - Jasmani
 - Rohani
 b. Pemeriksaan lokal :
 - I O
 - E O
3. Pemeriksaan dan pengukuran studi model
4. Analisa foto muka baik dari depan maupun dari samping.
5. Pemeriksaan Ro foto IO ataupun Panremik
6. Analisa chepalometrik baik dari arah antero posterior maupun lateral
7. Pemeriksaan elektromyografi untuk mengetahui abnormalitas otot muka dan pengunyahan
8. Pemeriksaan teleradiografi pergelangan tangan untuk mengetahui index carpal yang digunakan untuk menentukan umur penulangan.
9. Pemeriksaan laboratorium untuk menentukan tes endomotologi atau untuk menentukan basal metabolik rate (BNR)
10. Biostatik
VIII. PERHITUNGAN DAN DETERMINASI LENGKUNG

❖ PENDAHULUAN

❖ PERHITUNGAN-PERHITUNGAN DALAM PERAWATAN ORTODONTIK

Di dalam rencana perawatan ortodontik dilakukan beberapa perhitungan untuk mengetahui bagaimana keadaan pertumbuhan dan perkembangan rahang. Jika seorang penderita datang ingin merapikan gigi-giginya terlebih dahulu harus diketahui apakah penderita tersebut berada pada masa periode gigi susu, bercampur atau permanen. Masing-masing periode metode perhitungan yang dilakukan berbeda.

1. Periode gigi susu
2. Periode gigi bercampur
 ≈ Metode Nance
 ≈ Metode Moyers
3. Periode gigi permanen
 ≈ Metode Pont
 ≈ Metode Korkhaus
 ≈ Metode Howes
 ≈ Metode Thompson & Brodie
 ≈ Metode Kesling

Analisis dan perhitungan-perhitungan tersebut dapat dilakukan dengan menyiapkan:

- Model studi
- Ronsen :
 - Individual atau intraoral
- Panoramic atau opique
- sefalometrik

- Tabel
- Rumus
- Alat ukur : sliding calipers (jangka sorong)

≈ **METODE NANCE**

1. Dikemukakan pada tahun 1934, di Pasadena, Kalifornia, Amerika.
2. Dasar : adanya hubungan antara jumlah mesiodistal gigi-gigi desidui dengan gigi pengganti
3. Tujuan : untuk mengetahui apakah gigi tetap yang akan tumbuh cukup tersedia/lebih/kurang ruang.
4. Gigi-gigi yang dipakai sebagai dasar : c m₁ m₂ dan gigi pengganti 3 4 5.

Lee way space: selisih ruang antara ruang yang tersedia dan ruang yang digunakan.

Masing-masing sisi :

RA : 0,9 mm
RB : 1,7 mm

Hal ini telah dibuktikan oleh G.V. BLACK dengan cara menghitung lebar mesiodistal dari:

Gigi desidui RB

\[
\begin{align*}
 c &= 5,0 \text{ mm} \\
 m_1 &= 7,7 \text{ mm} \\
 m_2 &= 9,9 \text{ mm} \\
\end{align*}
\]

\[
22,6 \text{ mm}
\]

-Gigi permanen RB

\[
\begin{align*}
 3 &= 6,9 \text{ mm} \\
 4 &= 6,9 \text{ mm} \\
 5 &= 7,1 \text{ mm} \\
\end{align*}
\]

\[
20,9 \text{ mm}
\]

Selisih satu sisi 22,6 – 20,9 = 1,7mm
dua sisi = 3,4 mm
RA : selisih satu sisi = 0,9 mm
dua sisi = 1,8 mm

Prosedur :

a. Persiapan
 1. Model RA & RB
 2. Ro foto regio III, IV, V
 3. Alat : jangka sorong

b. Cara
 1. Ukur mesiodistal c m₁m₂ dari model atau langsung
 RA-kanan, kiri
 RB-kanan, kiri
 Kemudian dijumlahkan.
 2. Ukur jumlah mesiodistal 3 4 5 yang belum tumbuh dari ro foto di regio
 III, IV, V –RA & RB kanan dan kiri.
 Kemudian dijumlahkan.

Akurasi hasil ro foto perlu, supaya tidak terjadi distorsi. Bila perlu dari masing-masing regio III, IV, V atau dibatasi tiap dua gigi satu ro foto. Kemudian bandingkan hasil 1 & 2
Kemungkinan :
 1. hasil 1=2 – cukup
 2. hasil 1>2 – kelebihan
 3. hasil 1<2 – kurang

Hubungan molar :
- Satu bidang terminal edge to edge
- Penyesuaian molar/Molar adjustment.
 Leeway Space - RA = 0,9 mm
 - RB = 1,7 mm
- Neutro oklusi
ad.1 - perlu observasi
ad.2 - molar adjustment
 - pengaturan gigi anterior
ad.3 - observasi
- grinding/slicing/stripping
- ekspansi lengkung gigi / basal / sutura palatina
- pencabutan: serial extraction

Ro Foto Nance-mutlak diperlukan, karena untuk mengetahui adanya;
- agenesia 3,4,5
- patologi
- resorbsi akar, dll.

Huckaba

Cara untuk mengetahui akurasi lebar mesiodistal masing-masing gigi 3,4,5 digunakan:

-Rumus : \[x = \frac{(y)(x^1)}{(y^1)} \]

\[x = \text{gigi tetap yang dicari} \]
\[y = \text{besar gigi susu diukur dari model} \]
\[y^1 = \text{besar gigi susu diukur dari ronsen} \]
\[x^1 = \text{besar gigi tetap diukur dari ronsen} \]

≈ METODE MOYERS

1. **Diperkenalkan oleh Movers, Jenkins dan staf ortodonsia Universitas Michigan.**

2. **Pemakaian ronsen foto tidak mutlak diperlukan.**

3. **Keuntungannya:**
 a. **Kesalahan sedikit dan ralat kecil diketahui dengan tepat.**
 b. Dapat dikerjakan dengan baik oleh ahli maupun bukan ahli.
 c. Tidak membutuhkan banyak waktu.
 d. **Tidak memerlukan alat khusus.**
 e. Dapat dikerjakan dalam mulut maupun pada studi model baik RA/RB

5. Kelompok gigi yang dipakai sebagai pedoman: \(21 \mid 12\)

- Alasan:
 1. Merupakan gigi permanen yang tumbuh paling awal.
 2. Mudah diukur dengan tepat baik intraoral/ekstraoral (model).
 3. Ukurannya tidak bervariasi banyak dibanding RA.

Prosedur
a. Disiapkan:
 - model RA & RB
 - jangka sorong
 - tabel kemungkinan RA, RB
b. RB: misal sisi kanan dulu
 1. ukur lebar mesiodistal gigi \(21 \mid 12\)
 2. kemudian dijumlahkan
 3. menentukan jumlah ruang yang diperlukan kalau gigi tersebut diatur dalam susunan yang baik.

Caranya:
 - tetapkan dengan jangka sorong suatu jumlah ukuran yang besarnya sama dengan jumlah 1 2 kanan
 - tempatkan satu ujung jangka sorong tadi pada midline antara 1 \(\mid\) 1 & ujung lain pada lengkung gigi sebelah kanan. Ujung ini mungkin akan terletak pada regio III. Buat tanda titik dengan pensil, titik ini merupakan distal gigi 2 setelah gigi 1 & 2 diatur. Ulangi step ini untuk sisi kiri.

5. Berapa perkiraan jumlah lebar 3 4 5 ?
 Dapat dilihat pada tabel kemungkinan, caranya: secara klinis diambil nilai 75%.

6. Berapa jumlah ruang yang tertinggal?

Hasil ad.4 dibanding ad.5. Kemungkinan yang terjadi:
- tidak ada sisa ruang
- kurang ruang
- kelebihan ruang.

Prosedur untuk RA = RB
1. Siapkan model RA
2. Hitung jumlah mesiodistal gigi 1+2 kanan/kiri
3. Buat lengkung imajiner RA dengan overjet yang diinginkan
4. Letakkkan 1+2 pada lengkung tersebut
5. Distal gigi 2 kanan/ kiri dapat ditentukan letaknya pada gigi III kanan/ kiri.
6. Beri tanda
7. Cari ruang yang disediakan untuk 345 kanan/kiri
 - dari tanda ad.6 sampai mesial gigi 6 (alat: jangka sorong)
8. Berapa ruang 345 yang seharusnya
9. Lihat tabel RA
 - ingat pedoman 21 12
 - bandingkan ad.7 dan ad.8
10. Kemungkinan hasil?

Perbedaan:
1. Tabel kemungkinan dipakai RA
2. Overjet harus dipertimbangkan
Pada RA patokan yang dipakai adalah gigi 1.
Hubungan molar: end to end/satu terminal plane

Problem:
1. Bagaimana mengukur $\Sigma 21\begin{array}{c}12\end{array}$ jika:
 a. satu/dua/seluruh gigi tersebut anomali
 b. agenese $1, 1, 1$ atau $1, 2$ atau 2
 c. gigi-gigi tidak sama erupsinya
 d. gigi 2 belum erupsi
2. Bagaimana usaha agar prediksi sekarang dapat dipertahankan
3. Bagaimana bila hubungan molar masih end to end / satu terminal plane
4. Bagaimana untuk orang Indonesia

≈ **METODE PONT**

(DR. Pont, drg. Perancis, 1909)

- Dasar : dalam lengkung gigi (dental arch) dengan susunan gigi teratur terdapat hubungan antara jumlah lebar mesiodistal keempat gigi insisivus atas dengan lebar lengkung inter premolar pertama dan inter molar pertama.
- Susunan normal :
 Ideal : -gigi-gigi yang lebar membutuhkan suatu lengkung yang lebar
 -gigi-gigi yang kecil membutuhkan suatu lengkung yang kecil
 -ada keseimbangan antara besar gigi dengan lengkung gigi
- Tujuan : untuk mengetahui apakah suatu lengkung gigi dalam keadaan kontraksi atau distraksi atau normal.

Kontraksi = kompresi = intraversion : sebagian atau seluruh lengkung gigi lebih mendekati bidang midsagital.
Distraksi = ekstraversion : sebagian atau seluruh lengkung gigi lebih menjauhi bidang midsagital.

Derajat kontraksi/distraksi :
- Mild degree : hanya 5 mm
- Medium degree : antara 5-10 mm
- Extreem degree : >10 mm

Hubungan dirumuskan:
1. Untuk lengkung gigi yang normal jumlah lebar mesiodistal 4 insisivus atas tetap kali 100, kemudian dibagi jarak transversal inter premolar pertama atas merupakan indeks premolar.
 \[
 \text{Indeks Premolar} = 80
 \]
 \[
 \text{Indeks Premolar} = \frac{\sum I \times 100}{\text{Jarak } P_1 - P_1}
 \]
 \[
 = 80
 \]
 \[
 \text{Jarak } P_1-P_1 = \frac{\sum I \times 100}{80}
 \]
 Jumlah lebar mesiodistal 4 insisivus tetap atas kali 100, kemudian dibagi jarak transversal intermolar pertama tetap atas merupakan indeks molar.
 \[
 \text{Indeks Molar} = 64
 \]
 \[
 \text{Indeks Molar} = \frac{\sum I \times 100}{\text{jarak } M_1-M_1}
 \]
 \[
 = 64
 \]
 \[
 \text{Jarak } M_1-M_1 = \frac{\sum I \times 100}{64}
 \]

Pengukuran lebar mesiodistal I:
- diameter paling lebar dari masing-masing gigi insisivus
- alat: jangka sorong.

Pengukuran jarak inter P₁:
• jarak antara tepi paling distal dari cekung mesial pada permukaan oklusal P₁.
• sudut distobukal pada tonjol bukal P₁

Pengukuran jarak inter M₁ :
• jarak antara cekung mesial pada permukaan oklusal M₁
• titik tertinggi tonjol tengah pada tonjol bukal M₁

Menentukan jarak inter P₁ & inter M₁ :
1. Mengukur langsung dari model (yang sesungguhnya)
2. Dari perhitungan rumus (yang seharusnya)
3. Dari tabel Pont (sebagai bandingan).

Cara memakai tabel Pont :
1. Jumlahkan lebar mesiodistal 4 insisivus atas tetap, masing-masing diukur dengan jangka sorong (dari model).
2. Cari ukuran tersebut dalam tabel.

Pada tabel terlihat bahwa, pada garis yang sama dalam kolom ke arah kanan menunjukkan jarak antara premolar kanan dan kiri, sedangkan kolom selanjutnya dalam garis yang sama menunjukkan jarak antara molar atas kanan dan kiri. Juga dapat ditentukan pada kolom selanjutnya jarak antara insisivus dan premolar atas.

Pont
1. Mixed dentition

<table>
<thead>
<tr>
<th>6 V 4 III 2 1</th>
<th>1 2 III 4 V 6</th>
</tr>
</thead>
<tbody>
<tr>
<td>6 V IV 3 2 1</td>
<td>1 2 3 IV V 6</td>
</tr>
</tbody>
</table>

2. Permanen

| 6 5 4 3 2 1 | 1 2 3 4 5 6 |
Gigi pedoman

- \[\begin{array}{cc}
6 & 5 \\
4 & 3 \\
2 & 1
\end{array} \quad \begin{array}{cc}
1 & 2 \\
3 & 4 \\
5 & 6
\end{array} \]

\[\approx \text{METODE KORKHAUS} \]
Jarak insisivus tetap atas dan premolar adalah jarak pada garis sagital antara titik pertemuan insisivus tetap sentral dan titik dimana garis sagital tersebut memotong garis transversal yang menghubungkan premolar pertama atas pada palatum.

\[\begin{array}{c}
P_1 \\
| \\
| \\
| \\
P_1
\end{array} \]

\[\approx \text{METODE HOWES} \]
(Ashley E. Howes, 1947)
Dasar:
1. Ada hubungan lebar lengkung gigi dengan panjang perimeter lengkung gigi.
2. Ada hubungan basal arch dengan coronal arch.
- Keseimbangan basal arch dengan lebar mesiodistal gigi.
1. Bila gigi dipertahankan dalam lengkung seharusnya lebar inter P₁ sekurang-kurangnya = 43 % dari ukuran mesiodistal M₁-M₁.
- lebar inter P₁: dari titik bagian dalam puncak tonjol bukal P₁.
- ukuran lengkung gigi: distal M₁ kanan – distal M₁ kiri
 (mesiodistal 654321 \mid 123456)
Indeks Howes:
\[
\frac{(P_1-P_1)}{(M_1-M_1)} = 43 \%
\]

2. Seharusnya lebar interfossa canina sekurang-kurangnya = 44% lebar mesiodistal gigi anterior sampai molar kedua.

Fossa canina terletak pada apeks premolar pertama.

Indeks Howes:
\[
\frac{\text{Interfossa canina}}{\text{Jumlah M1-M1}} = 44 \%
\]

\[
\begin{array}{c|c|c}
\text{Jumlah M1-M1} & > 44\% & < 43\% \\
\hline
> 44\% & 44\% & <44\% \\
< 43\% & 43\% & > 43\%
\end{array}
\]

Kasus-kasus dengan lebar interfossa canina antara 37% - 44% lebar mesiodistal M1-M1, keadaan ini dikategorikan dalam kasus yang meragukan. Mungkin dilakukan pencabutan gigi atau pelebaran.

Bila lebar interfossa canina : jumlah M1-M1 < 37%, hal ini sebagai indikasi suatu basal arch defisiensi sehingga pencabutan harus dilakukan.

Indeks Howes: \[
\frac{\text{Interfossa canina}}{\text{Jumlah M1-M1}} = 44 \%
\]
Interfossa canina = (M1-M1) x 44%
(37%-44%)(M1-M1)
37% (M1-M1)

≈ **METODE THOMPSON & BRODIE**

- Menentukan lokasi (daerah) sebab-sebab terjadinya deep overbite.
- Deep overbite: suatu kelainan gigi dimana tutup menutup (over lapping) gigi-gigi depan atas bawah sangat dalam menurut arah bidang vertikal.
- Normal overbite:
 - rata-rata tutup menutup = 1/3 panjang mahkota 1.
 - normalnya adalah = 2 - 4 mm
- Dapat terjadi pada ketiga klas maloklusi Angle: kelas I, II, III
- Keadaan ini sangat tidak menguntungkan untuk kesehatan di kemudian hari serta keawetan gigi geligi tersebut dan melihat bagaimana pengaruhnya pada gigi anak-anak.

Beberapa hubungan yang mungkin terjadi:
1. Deep overbite
2. Palatal bite / Closed bite
3. Shallow bite
4. Edge to edge bite
5. Cross bite = reversed bite
6. Open bite

Deep overbite dapat disebabkan:
1. Dental:
 a. Supra oklusi gigi-gigi anterior.
 b. Infra oklusi gigi-gigi posterior.
 c. Kombinasi a dan b.
 d. Inklinasi lingual gigi-gigi P dan M.
2. Skeletal:
a. Ramus mandibulae yang panjang
b. Sudut gonion yang tajam
c. Pertumbuhan procesus alveolaris yang berlebihan.

3. Kombinasi
 • Pada keadaan normal dalam keadaan physiologic rest position (istirahat) proporsi muka pada ukuran vertikal : Nasion ke Spina Nasalis Anterior (SNA) = 43% dari jumlah panjang Nasion ke Mentum (Gnathion).
 • Ukuran ini sangat penting untuk mengetahui prognosis dari deep overbite yaitu koreksinya ditujukan pada elevasi (ekstrusi) gigi-gigi bukal dan atau depresi (intrusi) gigi-gigi anterior.

Analisis deep overbite dapat dipelajari dari:
1. Cetakan model gigi-gigi penderita
2. Foto profil penderita
3. Langsung dari penderita
4. Dengan sefalometri radiografik

1. Mempelajari model gigi-gigi penderita :
 - Sempurna tidaknya kalsifikasi dilihat adanya benjolan yang tidak sempurna rata pada model, pada palatum, procesus alveolaris, dan lain-lain.
 - Adanya benjolan berarti kalsifikasi tidak sempurna.
 - Adanya gingiva tebal.
 - Kurva Von Spee yang tajam.
2. Dari foto profil penderita
 b. Jika NA – SNA < 43% maka SNA ke Mentum lebih panjang, berarti ada supraoklusi gigi-gigi anterior.
3. Langsung dari penderita
Mempelajari pada penderita, jika ada keragu-raguan deep overbite disebabkan oleh karena infraoklusi gigi-gigi bukal (P dan M) saja atau bersama-sama dengan supraoklusi gigi-gigi anterior.

Cara Thompson & Brodie:

a. Ambil sepotong stenz (wax) dilunakkan.

b. Letakkan stenz tersebut di atas permukaan okclusal P dan M salah satu rahang atau kanan dan kiri.

c. Penderita disuruh menggigit stenz sehingga kedudukan profil muka penderita pada keseimbangan: \(NA - SNA = 43\% \) NA – Mentum

d. Setelah stenz keras dilihat pada regio anteriornya:

- Jika deep overbite sama sekali hilang, sedang stenz masih tebal berarti ada infraoklusi gigi-gigi P & M.
- Jika deep overbite masih, sedang stenz tergigit habis berarti adanya supraoklusi gigi-gigi anterior
- Jika deep overbite masih, sedang stenz masih ada ketebalan; hal ini berarti ada kombinasi keadaan tersebut di atas.

4. Dari mempelajari sefalometri radiografik:
 - Cara yang baik untuk menentukan deep overbite yang bersifat skeletal type, dimana akan terlihat:

 a. Frankfurt Mandibulair Plane Angle kecil.

 b. Panjang Ramus Mandibulae lebih panjang.

 c. Sudut gonion tajam

 d. Pertumbuhan ke arah vertikal dan bagian muka kurang.

Prognosa:

1. Dental baik.
2. Skeletal tidak menguntungkan.
3. Deep overbite karena kalsifikasi yang jelek dari alveolaris dan basal bone biasanya jelek.
Alat: Bite plate anterior

Perawatan:

- Perlu over correction
- Periode bertahap.

Bite Raiser

1. Dasar pemakaian:
 - siang malam
 - makan/tidak
 - aktif/tidak

2. Periode pemakaian:
 - permulaan
 - selang antara tahap I – selesai
 - akhir perawatan/retainer
 - kombinasi

3. Manipulasi:
 a. Alat belum dipakai, dilihat bagian:
 - anterior : gigi RA & RB saling kontak.
 - posterior : gigi RA & RB saling kontak.
 Tekanan ke seluruh gigi.
 b. Alat dipakai:
 - anterior : gigi bawah kontak dengan pelat.
 - posterior : gigi atas & bawah
 Saling terpisah dan tidak berkontak.

 Tekanan hanya pada pelat di bagian anterior.

- Bagaimana ketebalan bite plane?
 Tebal ----- jarak besar
- alat goncang
- gigi tekanan besar
- tidak dapat makan
- fungsi kurang efektif

\[\text{METODE KESLING} \]
Adalah suatu cara yang dipakai sebagai pedoman untuk menentukan atau menyusun suatu lengkung gigi dari model aslinya dengan membelah atau memisahkan gigi-gigi, kemudian disusun kembali pada basal archnya baik mandibula atau maksila dalam bentuk lengkung yang dikehendaki sesuai posisi aksisnya.

Cara ini berguna sebagai suatu pertolongan praktis yang dapat dipakai untuk menentukan diagnosis, rencana perawatan maupun prognosis perawatan suatu kasus secara individual.

- Karena cara ini mampu untuk mendiagnosis maka disebut: **DIAGNOSTIC SET UP MODEL**
- Karena model yang telah disusun kembali dalam lengkung gigi tersebut merupakan gambaran suatu hasil perawatan maka disebut: **PROGNOSIS SET UP MODEL**

Prosedur:
1. Siapkan model kasus RA & RB.
2. Fiksasi pada okludator yang sesuai, dengan dibuat kedudukan basis dari model sejajar dengan bidang okclusal (model RB).
Seharusnya bidang oklusal dengan bidang mandibula (mandibulair plane) membentuk sudut rata-rata 15°.

Cara:
 a. Buat lubang dengan gergaji ± 3 mm di atas gingival margin (fornix) antara 1 | 1.

c. Kemudian dari sini buat irisan vertikal pada aproksimal M₂-M₁, terjadi irisan:

![Diagram di sini]

d. Beri tanda masing-masing gigi agar tidak keliru.

![Diagram di sini]

e. Buat pada setiap aproksimal irisan arah vertikal.

![Diagram di sini]

f. Pisahkan masing-masing gigi.

g. Susun kembali gigi-gigi tersebut dalam lengkung yang dikehendaki dengan perantaraan pelekat wax. Perlu diperhatikan:

![Diagram di sini]

Akan terlihat:
- cukup ruang
kurang ruang, maka dilakukan pengurangan gigi (pencabutan 1 / 2 gigi : P₁/P₂).

Rahang Atas:

1. **cara sama**
2. mengikuti Rahang Bawah
3. overjet, overbite dipertimbangkan.

Modifikasi Cara Kesling

1. Siapkan hasil cetakan yang belum diisi gips.

2. Isi dengan gips sampai ± 3 mm dari gingival margin.

3. Tunggu sampai agak keras, kemudian separasi dengan wax cair panas.
4. Tunggu wax keras kemudian isi lagi dengan gips, tunggu, lepaskan cetakan.

5. Dipisahkan masing-masing gigi dengan terlebih dahulu model difiksasi pada okludator dan diberi tanda serta dipisahkan arah vertikal pada aproksimal kontaknya.

6. Susun kembali sesuai lengkung yang dikehendaki dengan cara sama.

Kasus:
1. Rahang Bawah normal
 Rahang Atas mengikuti Rahang Bawah
2. Rahang Atas normal
 Rahang Bawah mengikuti Rahang Atas
3. Rahang Atas & Rahang Bawah tidak normal
 Tentukan Rahang Bawah lebih dulu
ANALISIS RUANG (CROWDING)

Dasar: ketidakteraturan dan crowding biasanya disebabkan karena kekurangan ruang.

Analisis ruang diperlukan untuk membandingkan antara ruang yang tersedia dan ruang yang dibutuhkan untuk mengatur gigi sebagaimana mestinya.

Perbandingan antara ruang yang tersedia dan ruang yang dibutuhkan ditentukan, apakah di dalam lengkung terjadi kekurangan ruang yang akhirnya
terjadi crowding, ataukah tersedia cukup ruang untuk menampung gigi-gigi atau kelebihan ruang yang akan membuat celah di antara gigi-gigi.

Analisis ini dapat dilakukan secara langsung pada model studi atau dengan komputer yang menandai dengan tepat dimensi lengkung dan gigi. Analisis model studi menggambarkan 2 dimensi. Metode komputer lebih disukai karena lebih mudah, sedangkan cara yang lebih praktis model studi di foto copy untuk mendapatkan gambaran 2 dimensi dari pandangan oklusal, kemudian ditandai. Gambaran yang akurat dapat diperoleh dengan cara sederhana yaitu menempatkan model pada tengah-tengah mesin foto copy untuk menghindari tepi area gambaran di mana sering tampak distorsi.

Analisis yang dilakukan baik secara manual maupun komputer adalah sebagai berikut:

- Tahap pertama dalam analisis ruang adalah menghitung ruang yang tersedia. Hal ini dilakukan dengan cara mengukur perimeter lengkung dari M1 - M1 melalui titik kontak dari gigi-gigi posterior dan tepi insisal gigi-gigi anterior. Ada 2 cara sebagai dasar untuk melakukan hal tersebut:
 1. Dengan pembagian lengkung gigi ke dalam segmen-segmen yang dapat diukur sebagai garis lurus perkiraan dari lengkung.
 2. Dengan membuat garis dari sepotong kawat (atau garis kurva pada layar komputer) ke garis oklusi kemudian dibuat garis lurus untuk diukur.
Cara pertama lebih disukai untuk penghitungan secara manual, sebab reliabilitasnya lebih besar. Cara lain yang dapat dipakai dengan tepat adalah program komputer.

- Tahap kedua adalah menghitung jumlah kebutuhan ruang untuk mengatur gigi. Hal ini dilaksanakan dengan mengukur lebar mesiodistal pada masing-masing gigi dari titik kontak ke titik kontak, dan kemudian lebar mesiodistal gigi-gigi individual tersebut dijumlahkan.

Apabila jumlah lebar gigi-gigi permanen lebih besar daripada jumlah ruang yang tersedia, terdapat kekurangan ruang pada perimeter lengkung dan akan terjadi crowding. Jika ruang yang tersedia lebih besar daripada ruang yang dibutuhkan (kelebihan ruang), akan terjadi celah pada beberapa gigi dapat diperkirakan.

Analisis ruang berdasarkan pada 2 asumsi penting:
1. Posisi anteroposterior insisivus baik (gigi insisivus terlalu protrusif atau retrusif).
2. Ruang yang tersedia tidak akan berubah karena pertumbuhan.
Tidak ada asumsi yang dapat diambil dengan semestinya.

Dengan memperhatikan asumsi pertama, harus diingat bahwa protrusif insisivus secara relatif biasa terjadi dan meskipun tidak biasa retrusi dapat terjadi. Ada interaksi antara crowding gigi dan protrusi atau retrusi. Jika gigi-gigi insisivus posisinya ke arah lingual (retrusi), maka akan terjadi crowding satu atau beberapa gigi, tetapi jika insisivus protrusif kekuatan crowding akan menjadi lebih ringan.

Pada fenomena yang sama, crowding dan protrusi mempunyai sudut pandang yang sangat berbeda. Dengan kata lain, jika tidak terdapat cukup ruang untuk menyusun gigi dengan semestinya, akhirnya akan terjadi crowding, protrusi atau (kemungkinan) kombinasi dari keduanya. Oleh sebab itu, informasi tentang seberapa besar insisivus protrusi harus tersedia pemeriksaan klinik untuk mengevaluasi hasil dari analisis ruang. Informasi ini berasal dari analisis bentuk muka (atau jika tersedia dari analisis sefalometrik).

Asumsi kedua, bahwa ruang yang tersedia tidak berubah selama pertumbuhan, untuk orang dewasa adalah valid, tetapi tidak boleh untuk anak-anak. Pada anak-anak dengan proporsi muka baik, kecenderungan berpindah gigi geligi terhadap rahang selama pertumbuhan relatif sangat kecil atau tidak ada, tetapi gigi-gigi sering bergeser ke arah anterior atau posterior dengan penyimpangan rahang. Oleh karena itu, analisis ruang kurang akurat dan kurang berguna pada anak-anak dengan problem skeletal (kelas II, kelas III, muka

DETERMINASI LENKGUNG GIGI

Determinasi lengkung gigi dilakukan untuk mengetahui diskrepansi ukuran mesiodistal gigi (kebutuhan ruang) setelah lengkung ideal dirancang seideal mungkin dari lengkung mula-mula yang ada pada pasien.

Metode determinasi lengkung gigi merupakan salah satu cara penetapan kebutuhan ruang untuk pengaturan gigi-gigi dalam perawatan ortodontik. Metode ini dikembangkan di klinik bagian ortodonsia FKG UGM, dan merupakan penyederhanaan dari metode analisis *Set up model* yang dikemukakan oleh Kesling (1956).

Metode ini mempunyai prinsip dasar yang sama dengan metode Kesling, yaitu menetapkan diskrepansi antara lengkung gigi yang direncanakan dengan besar gigi yang akan ditempatkan pada lengkung tersebut pada saat melakukan koreksi maloklusi. Perbedaannya adalah, pada metode Kesling dilakukan langsung pada model dengan memisahkan giji-gigi yang akan dikoreksi dengan cara menggergaji masing-masing mahkota gigi dari bagian processus alveolarisnya setinggi 3 mm dari marginal gingiva, kemudian menyusun kembali pada posisi yang benar. Diskrepansi ruang dapat diketahui dari sis ruang untuk penempatan gigi Premolar pertama dengan lebar mesiodistal gigi tersebut untuk masing-masing sisi rahang.

Pada metode determinasi lengkung dilakukan dengan cara tidak langsung yaitu dengan mengukur panjang lengkung ideal yang direncanakan pada plastik transparan di atas plat gelas, kemudian membandingkan dengan jumlah lebar mesiodistal gigi yang akan ditempatkan pada lengkung tersebut. Dengan metode ini perencanaan perawatan akan lebih mudah dilakukan karena tidak perlu
membuat model khusus (Set up model), jadi langsung bisa dilakukan pada model studi.

Bahan dan alat yang digunakan :

1. Model studi
2. Plat gelas/mika tebal 2 mm
3. Plastik transparan
4. Kawat tembaga diameter 0,7 mm
5. Spidol F (Fine) 2 warna (biru dan merah)
6. Kaliper geser skala 0,05 mm
7. Alkohol / thinner
8. Kapas

Cara kerja :

a. Penapakan lengkung pra koreksi (lengkung awal / lengkung mula-mula)
 1. Menapak lengkung awal pada rahang atas
 2. Menapak lengkung awal pada rahang bawah
 3. Mengecek ketepatan hasil penapakan
b. Penapakan lengkung pasca koreksi (lengkung ideal)
 1. Membuat lengkung ideal pada rahang atas
 2. Membuat lengkung ideal pada rahang bawah
c. Pengukuran diskrepansi lengkung
 1. Mengukur diskrepansi lengkung ideal rahang atas
 2. Mengukur diskrepansi lengkung ideal rahang bawah
d. Menetapkan cara pencarian ruang

Penjelasan :

a. Menapak lengkung pra koreksi:
Lengkung pra koreksi juga disebut sebagai lengkung mula-mula atau lengkung awal sebelum perawatan dilakukan.

1. Penapakan pada rahang atas
 a. Model studi rahang atas diletakkan di atas meja datar sejajar lantai.
 b. Plat gelas atau mika diletakkan di atas permukaan oklusal gigi-gigi.
 c. Di atas plat dilapisi plastik transparan.
 d. Dengan pengamatan tegak lurus bidang plat, penapakan dilakukan dengan spidol biru mengikuti lebar mesiodistal gigi (lebar mesiodistal terbesar) dari gigi M\textsubscript{2} kanan – M\textsubscript{2} kiri, sehingga akan terbentuk lengkung yang berkelok-kelok mengikuti posisi gigi yang tidak teratur.
 e. Menetapkan posisi puncak lengkung, dengan cara membuat titik pada puncak lengkung sesuai dengan posisi median line gigi di daerah interdental Insisivus sentral atas.
 f. Menetapkan basis lengkung dengan membuat titik pada kedua kaki lengkung (kanan dan kiri) di daerah distal gigi yang paling distal yang posisinya normal.

Contoh:
 - Jika koreksi gigi akan dilakukan hanya sampai gigi Insisivus lateral kanan dan kiri, basis lengkung dibuat di sebelah distal gigi kaninus kanan dan kiri.
 - Jika koreksi dilakukan sampai gigi kaninus kanan dan kiri atau akan diperkirakan dilakukan pencabutan P\textsubscript{1}, basis lengkung dibuat di sebelah distal P\textsubscript{2} kanan dan kiri.
 - Jika koreksi dilakukan sampai P\textsubscript{2} kanan dan kiri basis lengkung ditetapkan pada distal gigi M\textsubscript{1}.

 g. Mentransfer posisi basis lengkung rahang atas ke model rahang bawah:
 - Model rahang atas dan bawah dioklusi secara sentrik.
 - Posisi basis lengkung gigi rahang atas ditransfer ke gigi rahang bawah dengan membuat garis pada permukaan bukal mahkota gigi.
rahan bawah kanan dan kiri, tepat pada sisi distal gigi rahang atas yang dipilih sebagai basis lengkung. Posisi basis lengkung gigi rahang atas tidak selalu akan sama dengan posisi distal gigi rahang bawah.

2. Penapakan pada rahang bawah:
 a. Plat gelas diletakkan pada permukaan okclusal model gigi rahang bawah.
 b. Plastik transparan dibalik supaya posisi kanan dan kiri rahang atas sesuai dengan rahang bawah, kemudian titik basis lengkung rahang atas dihimpitkan pada posisi basis yang telah dibuat pada rahang bawah tadi.
 c. Kemudian dilakukan penapakan dengan spidol biru mengikuti lebar mesiodistal terlebar dari gigi M$_2$ kanan – M$_2$ kiri, terbentuk lengkung berkelok-kelok mengikuti posisi gigi yang ada.
 d. Menetapkan posisi puncak lengkung dengan cara membuat titik pada puncak lengkung rahang bawah di daerah interdental Insisivus sentral bawah.
 e. Menetapkan basis lengkung dengan membuat titik pada kedua kaki lengkung rahang bawah (kanan dan kiri) di daerah distal gigi yang paling distal yang posisinya normal. Posisi basis lengkung rahang bawah tidak harus sama dengan gigi rahang atas.

3. Pengecekan hasil penapakan:
 Untuk mengetahui ketepatan penapakan dilakukan pengecekan hasil penapakan dengan cara melakukan pengukuran dengan kaliper geser:
 a. Jarak puncak lengkung rahang atas dengan rahang bawah harus sesuai dengan besar overjet pasien.
 b. Lebar kaki lengkung rahang atas dan bawah pada hasil penapakan di plat gelas harus sesuai dengan lebar pada model studi.
b. Penapakan lengkung pasca koreksi (lengkung ideal)

Lengkung pasca koreksi adalah lengkung ideal untuk masing-masing pasien (individual), direncanakan oleh operator berdasarkan kondisi ideal yang mungkin dapat dicapai dalam perawatan. Dengan mengacu pada oklusi normal, posisi dan relasi rahang serta kemampuan alat yang dipakai untuk melakukan koreksi terhadap gigi, kemudian ditetapkan:

- Apakah akan melakukan koreksi median line? Hal ini sulit dilakukan dengan alat lepasan jika harus menggeser banyak gigi untuk mengoreksi garis median yang sedikit bergeser.
- Apakah akan melakukan koreksi relasi molar pertama (klasifikasi Angle)? Hal ini sulit dilakukan dengan alat lepasan jika harus menggeser banyak gigi posterior.
- Apakah malposisi ringan pada gigi posterior akan dikoreksi atau sudah dianggap normal saja? Dengan alat lepasan akan sulit dikerjakan untuk mengoreksi gigi posterior yang rotasi ringan.
- Apakah akan melakukan retrusi gigi anterior secara maksimal untuk mengkompensasi rahang yang protrusif? Hal ini dilakukan pada kasus maloklusi tipe skeletal atau kombinasi dento-skeletal dengan koreksi retrusi kompensasi pada gigi-gigi anterior.
- Apakah lengkung ideal dibuat terlebih dahulu pada rahang atas diikuti rahang bawah, atau sebaliknya? Tergantung pada posisi rahang yang dianggap normal dan kemampuan gigi-gigi untuk mengkompensasi diskrepansi rahang tersebut.

1. Penapakan pada rahang atas:
 a. Plat gelas diletakkan pada permukaan oklusal model rahang atas dan plastik transparan dibalik dikembalikan pada posisi semula.
 b. Tetapkan posisi puncak lengkung ideal rahang atas yang akan dibuat, yaitu:
 - Jika tidak ada retrusi, puncak lengkung tetap.
• Retrusi maksimal sampai inklinasi gigi insivus atas tegak yaitu dengan meletakkan titik spidol merah tepat setinggi foramen insisivum.

c. Ukur besar retrusi gigi anterior atas yang telah ditetapkan dengan mengukur posisi puncak lengkung mula-mula ke posisi puncak lengkung ideal dan hitung besar perubahan overjet yang terjadi dengan mengurangi besar overjet mula-mula dengan besar retrusi rahang atas yang telah ditetapkan. Apabila nilainya negatif akan terjadi crossbite anterior jika tidak dilakukan retrusi pada rahang bawah.

d. Tetapkan beberapa titik posisi gigi lain yang dianggap normal (jika ada). Hubungkan titik basis lengkung kanan dan kiri ke puncak lengkung membentuk lengkung ideal rahang atas.

2. Penapakan pada rahang bawah :

a. Plat gelas dipindahkan ke model rahang bawah. Plastik transparan dibalik, posisi basis dipaskan pada posisi semula.

b. Tetapkan overjet akhir yang akan direncanakan dengan menetapkan posisi puncak lengkung ideal rahang bawah di belakang puncak lengkung ideal rahang atas.

c. Tetapkan besar retrusi (mungkin juga protrusi) pada rahang bawah yang harus dilakukan dengan mengukur jarak posisi titik puncak lengkung awal ke puncak lengkung ideal rahang bawah.

d. Tetapkan beberapa titik posisi gigi lain yang dianggap normal (jika ada). Hubungkan titik basis lengkung kanan dan kiri ke puncak lengkung ideal rahang bawah.

c. Pengukuran diskrepansi lengkung :

Diskrepansi lengkung adalah perbedaan antara panjang lengkung ideal yang dirancang dengan jumlah lebar mesiodistal gigi-gigi yang akan ditempatkan pada lengkung tersebut. Hal ini dapat dilakukan dengan mempertimbangkan apakah perlu dilakukan koreksi median line gigi atau tidak?

1. Pengukuran pada rahang atas:
a. Kawat tembaga dibuat melengkung diletakkan tepat pada plastik transparan sesuai dengan lengkung ideal rahang atas yang telah dibuat.
b. Dengan spidol tetapkan posisi basis kanan dan kiri pada kawat.
c. Tetapkan posisi puncak lengkung tepat pada posisi median line rahang atas. Jika perlu dilakukan koreksi median line. Tetapkan posisi puncak lengkung ideal dengan menggeser posisi median line ke posisi yang benar sesuai dengan besar pergeseran gigi yang ada.
d. Kawat tembaga diluruskan, ukur panjang lengkung ideal:
 - Dari basis kanan ke puncak lengkung bandingkan dengan jumlah lebar mesiodistal gigi-gigi sisi kanan, selisih pengukuran merupakan besar dikrepansi lengkung sisi kanan.
 - Dari basis kiri ke puncak lengkung bandingkan dengan jumlah lebar mesiodistal gigi-gigi sisi kiri, selisih pengukuran merupakan besar dikrepansi lengkung sisi kiri.

2. Pengukuran pada rahang bawah:
 a. Kawat tembaga diluruskan tanda spidol pada kawat dibersihkan dengan kapas alkohol atau thinner.
 b. Dengan cara yang sama seperti pada rahang atas, lakukan juga pengukuran pada rahang bawah.
d. Menetapkan cara pencarian ruang
 Menurut Carey, apabila kekurangan ruang tiap sisi lengkung yang didapatkan:
 1. Lebih besar dari setengah lebar mesiodistal gigi P1, cabut gigi P1 pada sisi tersebut.
 2. Lebih besar dari seperempat sampai setengah lebar mesiodistal gigi P1 dianjurkan untuk dilakukan:
 - Pencabutan satu P1 pada salah satu sisi lengkung jika ada pergeseran median line.
 - Pencabutan dua P2 kanan dan kiri jika lengkung gigi sudah simetris
• Ekspansi kombinasi grinding mesiodistal gigi jika lengkung gigi kontraksi.

3. Lebih kecil dari seperempat lebar mesiodistal gigii P1 dapat dilakukan:
 • Penggrindingan lebar mesiodistal gigi anterior jika pasien tidak rentan karies.
 • Ekspansi jika lengkung gigi kontraksi.

Gambar hasil penapakan:

![Diagram of cephalometric result]

Keterangan:

<table>
<thead>
<tr>
<th>Lengkap pra koreksi (awal/mula-mula)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lengkap pasca koreksi (ideal)</td>
</tr>
</tbody>
</table>

IX. SEFALOMETRI

❖ PENDAHULUAN

Mahasiswa dituntut untuk menguasai pengetahuan yang mendasari perawatan yang akan dilakukan, sebelum melakukan perawatan ortodontik. Mahasiswa juga dituntut untuk menguasai ilmu pengetahuan lain yang mendukung, seperti radiografik, histologi, anatomi dan lain sebagainya.

Penegakan diagnosis diperlukan sebelum melakukan perawatan ortodontik. Diperlukan faktor-faktor pendukung dalam menegakkan diagnosis
ortodontik, antara lain sefalometri radiografik. Berdasarkan hal tersebut maka pengetahuan tentang sefalometri radiografik penting dikuasai oleh mahasiswa.

Beberapa aspek mengenai sefalometri radiografik meliputi pengenalan, teknik, referensi, analisis dan kelemahan-kelemahan sefalometri radiografik akan dibahas didalam bab ini.

Setelah membaca bab ini, diharapkan mahasiswa mampu:
1. Menyebutkan tentang pengenalan sefalometri radiografik,
2. Menyebutkan tentang teknik sefalometri radiografik,
3. Menyebutkan tentang referensi sefalometri radiografik,
4. Menyebutkan tentang analisis sefalometri radiografik,
5. Menyebutkan tentang kelemahan-kelemahan sefalometri radiografik.

PENGENALAN SEFALOMETRI RADIOGRAFIK

1. Sejarah sefalometri radiografik

Gambaran sefalometri radiografik pertama kali diperkenalkan pada tahun 1922 oleh Pacini. Tahun 1931, Hofrath (Jerman) dan Broadbent (Amerika) dalam waktu bersamaan menemukan teknik sefalometri yang telah terstandarisasi
dengan menggunakan alat sinar-X dan pemegang kepala yang dinamakan sefalostat atau sefalometer. Film yang dihasilkan dari pemotretan kepala ini disebut sefalogram atau film kepala atau sefalometri sinar-X.

Sefalometri radiografik diperkenalkan dalam bidang ortodontik sekitar tahun 1930-an, meskipun metode yang benar untuk aplikasi praktik ortodontik baru 20 tahun kemudian. Beberapa tahun kemudian, metode analisis dikembangkan oleh beberapa pengarang.

2. Arti dan manfaat sefalometri radiografik

Sefalometrik adalah ilmu yang mempelajari pengukuran-pengukuran yang bersifat kuantitatif terhadap bagian-bagian tertentu dari kepala untuk mendapatkan informasi tentang pola kraniofasial.

Manfaat sefalometri radiografik adalah:

a. Mempelajari pertumbuhan dan perkembangan kraniofasial.
Dengan membandingkan sefalogram-sefalogram yang diambil dalam interval waktu yang berbeda, untuk mengetahui arah pertumbuhan dan perkembangan kraniofasial.

b. Diagnosis atau analisis kelainan kraniofasial.
Untuk mengetahui faktor-faktor penyebab maloclusi (seperti ketidakseimbangan struktur tulang muka).

c. Mempelajari tipe fasial.
Relasi rahang dan posisi gigi-gigi berhubungan erat dengan tipe fasial. Ada 2 hal penting yaitu : (1) posisi maksila dalam arah antero-posterior terhadap kranium dan (2) relasi mandibula terhadap maksila, sehingga akan mempengaruhi bentuk profil : cembung, lurus atau cekung.

d. Merencanakan perawatan ortodontik.
Analisis dan diagnosis yang didasarkan pada perhitungan-perhitungan sefalometrik dapat diprakirakan hasil perawatan ortodontik yang dilakukan.

e. Evaluasi kasus-kasus yang telah dirawat.
Dengan membandingkan sefalogram yang diambil sebelum, sewaktu dan sesudah perawatan ortodontik.
f. Analisis fungsional.

Fungsi gerakan mandibula dapat diketahui dengan membandingkan posisi kondilus pada sefalogram yang dibuat pada waktu mulut terbuka dan posisi istirahat.

g. Penelitian

📍 TEKNIK SEFALOMETRI RADIOGRAFIK

1. Alat

Alat-alat dasar yang digunakan untuk menghasilkan suatu sefalogram terdiri dari sefalostat atau sefalometer, tabung sinar tembus dan pemegang kaset beserta kaset yang berisi film dan layar pengintensif (intensifying screen). Pemegang kaset dapat diatur sedemikian rupa agar diperoleh gambar yang tajam. Layar pengintensif digunakan untuk mengurangi jumlah penyinaran yang tidak diperlukan. Bagian dari sefalometer yang diletakkan pada telinga (ear rod) dapat digerakkan sehingga mudah disesuaikan dengan lebar kepala pasien. Tabung sinar harus dapat menghasilkan tegangan yang cukup tinggi (90 KvP) guna menembus jaringan keras dan dapat menggambarkan dengan jelas jaringan keras dan lunak.

Dikenal 2 macam sefalometer, yaitu:

a. Broadbent-Bolton, digunakan 2 tabung sinar X dan 2 pemegang kaset, sehingga objek tidak perlu bergerak atau berubah apabila akan dibuat penyinaran/proyeksi lateral atau antero-posterior.

b. Higley, terdiri dari 1 tabung sinar X, 1 pemegang kaset dan sefalometernya dapat berputar sedemikian rupa sehingga objek dapat diatur dalam beberapa macam proyeksi yang diperlukan. Sefalometer modern pada umumnya adalah jenis ini yaitu Rotating type.

2. Teknik pembuatan dan penapakan sefalogram

a. Teknik pembuatan sefalogram

• Proyeksi lateral atau profil
Proyeksi lateral dapat diambil pada subjek dengan oklusi sentrik, mulut terbuka atau istirahat. Kepala subjek difiksir pada sefalometer, bidang sagital tengah terletak 60 inci atau 152,4 cm dari pusat sinar X dan muka sebelah kiri dekat dengan film. Pusat berkas sinar X sejajar sumbu transmeatal (ear rod) sefalometer. Jarak bidang sagital tengah-film 18 cm. FHP (Frankfurt Horizontal Plane) sejajar lantai, subjek duduk tegak, kedua telinga setinggi ear rod.

- Proyeksi postero-anterior/frontal
 Pada proyeksi postero-anterior tube diputar 90° sehingga arah sinar X tegak lurus sumbu transmeatal.

- Oblique sefalogram
 Oblique sefalogram kanan dan kiri dibuat dengan sudut 45° dan 135° terhadap proyeksi lateral. Arah sinar X dari belakang untuk menghindari superimposisi dari sisi mandíbula yang satunya. FHP sejajar lantai. Oblique sefalogram sering digunakan untuk analisis subjek pada periode gigi bercampur.

b. Teknik penapakan sefalogram

Analisis sefalometri radiografik dibuat pada gambar hasil penapakan sefalogram. Acetate matte tracing paper (kertas asetat) tebal 0,003 inci ukuran 8x10 inci dipakai untuk penapakan sefalogram. Kertas asetat dilekatkan pada tepi atas sefalogram dengan Scotch tape (agar dapat dibuka apabila diperlukan), kemudian diletakkan di atas iluminator (negatoscope). Penapakan sefalogram dianjurkan menggunakan pensil keras (4H) agar diperoleh garis-garis yang cermat dan tipis.
Gambar 1. Penyusunan dasar pembuatan sefalogram
atas: proyeksi lateral
bawah: proyeksi antero-posterior
tengah: jarak sumber sinar X-objek-film.

Bagian-bagian yang perlu ditapak pada sefalogram lateral antara lain:

Bagian 1:
• Profil jaringan lunak
• Kontur eksternal kranium
• Vertebra servikalis pertama dan kedua

Bagian 2:
• Kontur internal kranium
• Atap orbita
• Sella turksika atau fossa pituitari
• Ear rod

Bagian 3:
• Tulang nasal dan sutura frontonasalis
• Rigi infraorbital
• Fisura pterigomaksilaris
• Spina nasalis anterior
• Spina nasalis posterior
• Molar pertama atas dan insisivus sentralis atas

Bagian 4:
• Simfisis mandibula
• Tepi inferior mandibula
• Kondilus mandibula
• Mandibular notch dan prosesus koronoideus
• Molar pertama bawah dan insisivus sentralis bawah

❖ REFERENSI SEFALOMETRI RADIOGRAFIK

1. Titik-titik antropometri

Tanda-tanda penting pada sefalometri radiografik adalah titik-titik yang dapat digunakan sebagai petunjuk dalam pengukuran atau untuk membentuk suatu bidang. Titik-titik tersebut antara lain:

• **Nasion (Na/N)** : titik paling anterior sutura frontonasalis pada bidang sagital tengah

136
- **Spina nasalis anterior (ANS)** : ujung tulang spina nasalis anterior, pada bidang tengah
- **Subspinal (A)** : titik paling dalam antara spina nasalis anterior dan Prosthion
- **Prosthion (Pr)** : titik paling bawah dan paling anterior antara gigi alveolaris maksila, pada bidang tengah, insisivus sentral atas
- **Insisif superior (Is)** : ujung mahkota paling anterior gigi insisivus sentral atas
- **Insisif inferior (Ii)** : ujung mahkota paling anterior gigi insisivus sentral bawah
- **Infradental (Id)** : titik paling tinggi dan paling anterior antara gigi alveolaris mandibula, pada bidang tengah, gigi insisivus sentral bawah
- **Supramental (B)** : titik paling dalam antara Infradental dan pogonion
- **Pogonion (Pog/Pg)** : titik paling anterior tulang dagu, pada bidang tengah
- **Gnathion (Gn)** : titik paling anterior dan paling inferior dagu
- **Menton (Me)** : titik paling inferior dari simfisis atau titik paling bawah dari mandibula
• **sela tursika (S)** : titik tengah fossa hipofisial

• **spina nasalis posterior (PNS)** : titik perpotongan dari perpanjangan dinding anterior fossa pterigopalatina dan dasar hidung

• **Orbital (Or)** : titik yang paling bawah pada tepi bawah tulang orbita

• **Gonion (Go)** : titik perpotongan garis singgung margin posterior ramus assenden dan basis mandibula

• **Porion (Po)** : titik paling luar dan paling superior ear rod

2. Garis dan bidang referensi
Menurut Krogman dan Sassouni, dikatakan garis apabila menghubungkan 2 titik, disebut bidang apabila menghubungkan paling sedikit 3 titik.

• **Sela-Nasion (S-N)** : garis yang menghubungkan Sela tursika (S) dan Nasion (N), merupakan garis perpanjangan dari basis kranial anterior

• **Nasion-Pogonion (N-Pg)** : garis yang menghubungkan Nasion (N) dan Pogonion (Pg), merupakan garis fasial

• **Y-Axis** : garis yang menghubungkan sela tursika (S) dan gnathion (Gn), digunakan untuk mengetahui arah/jurusan pertumbuhan mandibula
Gambar 2. Titik antropometri, garis dan bidang referensi

- **Frankfurt Horizontal Plane (FHP)**: bidang yang melalui kedua porion dan titik orbital, merupakan bidang horizontal

- **Bidang mandibula (mandibular plane/MP)** terdapat 3 cara pembuatannya:
 - bidang yang melalui gonion (Go) dan gnathion (Gn) (Steiner)
 - bidang yang melalui gonion (Go) dan Menton (Me)
 - bidang yang menyinggung tepi bawah mandibula dan menton (Me) (Downs)
Gambar 3. Tiga cara pembuatan bidang mandibula

- **Bidang oklusal (Occlusal Plane)** terdapat 2 definisi:
 - garis yang membagi dua overlapping tonjol gigi molar pertama dan insisal overbite (Downs)
 - garis yang membagi overlapping gigi molar pertama dan gigi premolar pertama (Steiner)
- **Bidang Palatal (Bispinal)** : bidang yang melalui spina nasalis anterior (ANS) dan spina nasalis posterior (PNS)
- **Bidang Orbital (dari Simon)** : bidang vertikal yang melalui titik orbital dan tegak lurus FHP
ANALISIS SEFALOMETRI RADIOGRAFIK

Pada saat ini, analisis sefalometri dari pasien yang dirawat ortodontik merupakan suatu kebutuhan. Metode analisis sefalometri radiografik antara lain dikemukakan oleh: Downs, Steiner, Rickett, Tweed, Schwarz, McNamara dan lain-lain. Berdasarkan metode-metode tersebut dapat diperoleh informasi mengenai morfologi dentoalveolar, skeletal dan jaringan lunak pada tiga bidang yaitu sagital, transversal dan vertikal.

KELEMAHAN SEFALOMETRIK

1. Kesalahan sefalometer

 Kesalahan sefalometer meliputi:

2. Kesalahan penapakan dan metode yang digunakan

 b. Kesalahan metode yang digunakan pada umumnya karena pengukuran 3 dimensi menjadi 2 dimensi, kesalahan interpretasi perubahan akibat pertumbuhan dan perawatan.
DAFTAR PUSTAKA

Dentaurum Catalog 2000.

